Satellite

From Citizendium
Revision as of 11:54, 9 July 2007 by imported>Carl Jantzen (Direct Copy from Wikipedia dated 17:15, 4 July 2007)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
An Earth observation satellite, ERS 2

Template:Otheruses

In the context of spaceflight, satellites are objects which have been placed into orbit by human endeavor. They are sometimes called artificial satellites to distinguish them from natural satellites such as the Moon.

Early theoretical work on artificial satellites

The first known fictional depiction of a satellite being launched into orbit is a short story by Edward Everett Hale, The Brick Moon. The story was serialized in The Atlantic Monthly, starting in 1869.[1][2] The idea surfaces again in Jules Verne's The Begum's Millions (1879).

In 1903 Konstantin Tsiolkovsky (1857–1935) published Исследование мировых пространств реактивными приборами (The Exploration of Cosmic Space by Means of Reaction Devices), which is the first academic treatise on the use of rocketry to launch spacecraft. He calculated the orbital speed required for a minimal orbit around the Earth at 8 km/second, and that a multi-stage rocket fueled by liquid propellants could be used to achieve this. He proposed the use of liquid hydrogen and liquid oxygen, though other combinations can be used. During his lifetime he published over 500 works on space travel and related subjects, including science fiction novels. Among his works are designs for rockets with steering thrusters, multi-stage boosters, space stations, airlocks for exiting a spaceship into the vacuum of space, and closed cycle biological systems to provide food and oxygen for space colonies. He also delved into theories of heavier-than-air flying machines, independently working through many of the same calculations that the Wright brothers were performing at about the same time.

In 1928 Herman Potočnik (1898–1929) published his sole book, Das Problem der Befahrung des Weltraums - der Raketen-Motor (The Problem of Space Travel - The Rocket Motor), a plan for a breakthrough into space and a permanent human presence there. He conceived of a space station in detail and calculated its geostationary orbit. He described the use of orbiting spacecraft for detailed peaceful and military observation of the ground and described how the special conditions of space could be useful for scientific experiments. The book described geostationary satellites (first put forward by Tsiolkovsky) and discussed communication between them and the ground using radio, but fell short of the idea of using satellites for mass broadcasting and as telecommunications relays.

In a 1945 Wireless World article the English science fiction writer Arthur C. Clarke (b. 1917) described in detail the possible use of communications satellites for mass communications.[3] Clarke examined the logistics of satellite launch, possible orbits and other aspects of the creation of a network of world-circling satellites, pointing to the benefits of high-speed global communications. He also suggested that three geostationary satellites would provide coverage over the entire planet.

History of artificial satellites

See also: Space Race
Soviet Union

The first artificial satellite was Sputnik 1, launched by the Soviet Union on 4 October 1957. This triggered the Space Race between the Soviet Union and the United States.

United States

In May, 1946, Project RAND had released the Preliminary Design of an Experimental World-Circling Spaceship, which stated, "A satellite vehicle with appropriate instrumentation can be expected to be one of the most potent scientific tools of the Twentieth Century.[4] The United States had been considering launching orbital satellites since 1945 under the Bureau of Aeronautics of the United States Navy. The Air Force's Project RAND eventually released the above report, but did not believe that the satellite was a potential military weapon; rather they considered it to be a tool for science, politics, and propaganda. In 1954, the Secretary of Defense stated, "I know of no American satellite program."

Following pressure by the American Rocket Society, the National Science Foundation, and the International Geophysical Year, military interest picked up and in early 1955 the Air Force and Navy were working on Project Orbiter, which involved using a Jupiter C rocket to launch a small satellite called Explorer 1 on January 31, 1958.

On July 29, 1955, the White House announced that the U.S. intended to launch satellites by the spring of 1958. This became known as Project Vanguard. On July 31, the Soviets announced that they intended to launch a satellite by the fall of 1957.

International

The largest artificial satellite currently orbiting the Earth is the International Space Station.

Space Surveillance Network

The United States Space Surveillance Network (SSN) has been tracking space objects since 1957 when the Soviets opened the space age with the launch of Sputnik I. Since then, the SSN has tracked more than 26,000 space objects orbiting Earth. The SSN currently tracks more than 8,000 man-made orbiting objects. The rest have re-entered Earth's turbulent atmosphere and disintegrated, or survived re-entry and impacted the Earth. The space objects now orbiting Earth range from satellites weighing several tons to pieces of spent rocket bodies weighing only 10 pounds. About seven percent of the space objects are operational satellites (i.e. - ~560 satellites), the rest are debris. USSTRATCOM is primarily interested in the active satellites, but also tracks space debris which upon reentry might otherwise be mistaken for incoming missiles. The SSN tracks space objects that are 10 centimeters in diameter (baseball size) or larger.

Types

MILSTAR:A communication satellite

Orbit types

For more information, see: List of orbits.


Centric Classifications

Galacto-centric Orbit - An orbit about the center of a galaxy. Earth's sun follows this type of orbit about the galactic center of the Milky Way.
Heliocentric Orbit - An orbit around the Sun. In our Solar System, all planets, comets, and asteroids are in such orbits, as are many artificial satellites and pieces of space debris. Moons by contrast are not in a heliocentric orbit but rather orbit their parent planet.
Geocentric Orbit - An orbit around the planet Earth, such as the Moon or artificial satellites. Currently there are approximately 2465 artificial satellites orbiting the Earth.
Areocentric Orbit - An orbit around the planet Mars, such as moons or artificial satellites.

Altitude Classifications

Low Earth Orbit (LEO) - Geocentric orbits ranging in altitude from 0 - 2,000 km (0 - 1,240 miles)
Medium Earth Orbit (MEO) - Geocentric orbits ranging in altitude from 2,000 km (1,240 miles) - to just below geosynchronous orbit at 35,786 km (22,240 miles). Also known as an intermediate circular orbit.
High Earth Orbit (HEO) - Geocentric orbits above the altitude of geosynchronous orbit 35,786 km (22,240 miles).

Inclination Classifications

Inclined Orbit - An orbit whose inclination in reference to the equatorial plane is not 0.
Polar Orbit - An orbit that passes above or nearly above both poles of the planet on each revolution. Therefore it has an inclination of (or very close to) 90 degrees.
Polar Sun-synchronous Orbit - A nearly polar orbit that passes the equator at the same local time on every pass. Useful for image taking satellites because shadows will be the same on every pass.

Eccentricity Classifications

Circular Orbit - An orbit that has an eccentricity of 0 and whose path traces a circle.
Hohmann transfer orbit - An orbital maneuver that moves a spacecraft from one circular orbit to another using two engine impulses. This maneuver was named after Walter Hohmann.
Elliptic Orbit - An orbit with an eccentricity greater than 0 and less than 1 whose orbit traces the path of an ellipse.
Geosynchronous Transfer Orbit - An elliptic orbit where the perigee is at the altitude of a Low Earth Orbit (LEO) and the apogee at the altitude of a geosynchronous orbit.
Geostationary Transfer Orbit - An elliptic orbit where the perigee is at the altitude of a Low Earth Orbit (LEO) and the apogee at the altitude of a geostationary orbit.
Molniya Orbit - A highly elliptic orbit with inclination of 63.4° and orbital period of ½ of a sidereal day (roughly 12 hours). Such a satellite spends most of its time over a designated area of the planet.
Tundra Orbit - A highly elliptic orbit with inclination of 63.4° and orbital period of one sidereal day (roughly 24 hours). Such a satellite spends most of its time over a designated area of the planet.
Hyperbolic orbit - An orbit with the eccentricity greater than 1. Such an orbit also has a velocity in excess of the escape velocity and as such, will escape the gravitational pull of the planet and continue to travel infinitely.
Parabolic Orbit - An orbit with the eccentricity equal to 1. Such an orbit also has a velocity equal to the escape velocity and therefore will escape the gravitational pull of the planet and travel until its velocity relative to the planet is 0. If the speed of such an orbit is increased it will become a hyperbolic orbit.
Escape Orbit (EO) - A high-speed parabolic orbit where the object has escape velocity and is moving away from the planet.
Capture Orbit - A high-speed parabolic orbit where the object has escape velocity and is moving toward the planet.

Synchronous Classifications

Synchronous Orbit - An orbit where the satellite has an orbital period equal to the average rotational period (earth's is: 23 hours, 56 minutes, 4.091 seconds) of the body being orbited and in the same direction of rotation as that body. To a ground observer such a satellite would trace an analemma (figure 8) in the sky.
Semi-Synchronous Orbit (SSO) - An orbit with an altitude of approximately 20,200 km (12544.2 miles) and an orbital period of approximately 12 hours
Geosynchronous Orbit (GEO) - Orbits with an altitude of approximately 35,786 km (22,240 miles). Such a satellite would trace an analemma (figure 8) in the sky.
Geostationary orbit (GSO): A geosynchronous orbit with an inclination of zero. To an observer on the ground this satellite would appear as a fixed point in the sky.
Clarke Orbit - Another name for a geostationary orbit. Named after the writer Arthur C. Clarke.
Supersynchronous orbit - A disposal / storage orbit above GSO/GEO. Satellites will drift west. Also a synonym for Disposal Orbit.
Subsynchronous orbit - A drift orbit close to but below GSO/GEO. Satellites will drift east.
Graveyard Orbit - An orbit a few hundred kilometers above geosynchronous that satellites are moved into at the end of their operation.
Disposal Orbit - A synonym for graveyard orbit.
Junk Orbit - A synonym for graveyard orbit.
Areosynchronous Orbit - A synchronous orbit around the planet Mars with an orbital period equal in length to Mars' sidereal day, 24.6229 hours.
Areostationary Orbit (ASO) - A circular areosynchronous orbit on the equatorial plane and about 17,000 km(10557 miles) above the surface. To an observer on the ground this satellite would appear as a fixed point in the sky.
Heliosynchronous Orbit - An heliocentric orbit about the Sun where the satellite's orbital period matches the Sun's period of rotation. These orbits occur at a radius of 24.360 Gm (0.1628 AU) around the Sun, a little less than half of the orbital radius of Mercury.

Special Classifications

Sun-synchronous Orbit - An orbit which combines altitude and inclination in such a way that the satellite passes over any given point of the planets's surface at the same local solar time. Such an orbit can place a satellite in constant sunlight and is useful for imaging, spy, and weather satellites.
Moon Orbit - The orbital characteristics of earth's moon. Average altitude of 384,403 kilometres (238,857 mi), elliptical-inclined orbit.

Pseudo-Orbit Classifications

Horseshoe Orbit - An orbit that appears to a ground observer to be orbiting a certain planet but is actually in co-orbit with the planet. See asteroids 3753 (Cruithne) and 2002 AA29.
Exo-orbit - A maneuver where a spacecraft approaches the height of orbit but lacks the velocity to sustain it.
Orbital Spaceflight - A synonym for Exo-orbit.
Lunar transfer orbit (LTO) -
Prograde Orbit - An orbit with an inclination of less than 90°. Or rather, an orbit that is in the same direction as the rotation of the primary.
Retrograde orbit - An orbit with an inclination of more than 90°. Or rather, an orbit counter to the direction of rotation of the planet. Almost no satellites are launched into retrograde orbit because the quantity of fuel required to launch them is much greater than for a prograde orbit. This is because when the rocket starts out on the ground, it already has an eastward component of velocity equal to the rotational velocity of the planet at its launch latitude.


Satellites can also orbit Lagrangian Points.

Launch capable countries

For more information, see: Timeline of first orbital launches by nationality.

This list includes countries with an independent capability to place satellites in orbit, including production of the necessary launch vehicle. Note: many more countries have the capability to design and build satellites — which relatively speaking, does not require much economic, scientific and industrial capacity — but are unable to launch them, instead relying on foreign launch services. This list does not consider those numerous countries, but only lists those capable of launching satellites indigenously, and the date this capability was first demonstrated. Does not include consortium satellites or multi-national satellites.

Full Space powers - owning by the independently developed launch vehicles:

First launch by country
Country Year of first launch First satellite Launches to orbit in 2006[1]
Template:Flagcountry
(followed now by Russia and Ukraine)
1957 Sputnik 1 1390
Template:Flagcountry 1958 Explorer 1 999
Template:Flagcountry 1965 Astérix ?
Template:Flagcountry 1970 Osumi ?
Template:Flagcountry 1970 Dong Fang Hong I 53
Template:Flagcountry 1971 Prospero X-3 ?
Template:Flagcountry 1981 Rohini ?
Template:Flagcountry 1988 Ofeq 1 6

Both North Korea (1998) and Iraq (1989) have claimed orbital launches but these are unconfirmed.

In any time earlier some other countries such as South Africa, Spain, Italy, West Germany, Canada, Australia, Argentina, Egypt, etc and private companies such as OTRAG, etc fulfilled the development of own launchers, but not realized ones.

As of 2007, only 7 countries from list above (six 'major' - Russia and Ukraine instead of USSR, also USA, Japan, China, India, and 1 'minor' - Israel) and one regional organisation (European Union presented by European Space Agency (ESA)) have independently launched satellites on their own indigenously developed launch vehicles. (The launch capabilities of the United Kingdom and France now fall under the ESA.)

Also one international private company (Sea Launch) has the launch capability by their purchasing of Ukrainian-Russian launchers.

Several other countries such as Brazil, Iran, South Korea, Malaysia, Pakistan, Turkey, etc are in the closest or early stages of developing their own small-scale launcher capabilities, and seek the membership in the club of space powers - others may have the scientific and industrial capability, but not the economic or political will.

Space powers extently - owning by the independently developed satellites:

First launch by country including help of another parties
Country Year of first launch First satellite Payloads in orbit in 2006[2]
Template:Flagcountry
(followed now by Russia and Ukraine)
1957 Sputnik 1 1390
Template:Flagcountry 1958 Explorer 1 999
Template:Flagcountry 1962 Alouette 1 33
Template:Flagcountry 1965 Astérix 43
Template:Flagcountry 1967 San Marco 2
Template:Flagcountry 1967 WRESAT
Template:Flagcountry 1970 Osumi 102
Template:Flagcountry 1970 Dong Fang Hong I 53
Template:Flagcountry 1971 Prospero X-3 23
Template:Flagcountry 1981 Rohini 31
Template:Flagcountry 1988 Ofeq 1 6
Template:Flagcountry 1998 NileSat 101 3
Template:Flagcountry 2006 KazSat 1 1

While Canada was the third country to build a satellite which was launched into Space, it was launched aboard a U.S. rocket from a U.S. spaceport. The same goes for Australia, who launched on-board a donated Redstone rocket. The first Italian-launched was San Marco 2, launched on 26 April, 1967 on a U.S. Scout rocket with U.S. support.[3] Australia's launch project, in November 1967, involved a donated U.S. missile and U. S. support staff as well as a joint launch facility with the United Kingdom.[4] Kazakhstan claimed that did launch their satellite independently, but satellite was built by the Russian help.

Heraldry

The (artificial, though this is not stated in the blazon) satellite appears as a charge in the arms of Arthur Maxwell House.[5] This is in addition to numerous appearances of the natural satellite the moon, and the moons of the planets Jupiter and Saturn (with those planets) in the arms of Pierre-Simon LaPlace.

See also

A model satellite in a museum

Template:Met inst

References

External links

af:Satelliet ar:قمر اصطناعي bs:Sateliti bg:Изкуствен спътник ca:Satèl·lit artificial cs:Umělá družice cy:Lloeren da:Satellit de:Satellit (Raumfahrt) et:Tehiskaaslane el:Τεχνητός δορυφόρος es:Satélite artificial eo:Artefarita satelito eu:Satelite artifizial fa:ماهواره fr:Satellite artificiel gl:Satélite artificial ko:인공위성 hr:Satelit id:Satelit ia:Satellite it:Satellite artificiale he:לוויין ka:ხელოვნური თანამგზავრი lv:Pavadonis lb:Satellit (Raumfaart) lt:Dirbtinis palydovas hu:Műhold nl:Kunstmaan ja:人工衛星 no:Kunstig satellitt pl:Sztuczny satelita pt:Satélite artificial ru:Искусственный спутник Земли simple:Satellite sk:Umelá družica sl:Satelit sr:Сателит fi:Satelliitti sv:Satellit th:ดาวเทียม vi:Vệ tinh yi:סאטעליט zh:人造衛星