Black hole: Difference between revisions

From Citizendium
Jump to navigation Jump to search
Line 33: Line 33:
== Characteristics ==
== Characteristics ==


Quite a few features have been attributed to black holes in observational astronomy, among which include its Bolometric luminosity, denoted by L<sub>Bol</sub>, absolute magnitude, the widely known event horizon and [[singularity]], Hawking radiation and Hawking points, and active galactic nuclei, etc.  The stellar remnant belief of black hole postulates that the event horizon is the threshold in space where the gravitational force surpasses the velocity of light, and relativity theory postulates the singularity being a point of infinite spacetime curvature. To an outside observer, objects falling into a black hole will take an [[infinity|infinite]] amount of time to reach the [[event horizon]].  The amount of time as measured by the object falling into the black hole, however, can be very short.
Quite a few features have been attributed to black holes in observational astronomy, among which include its Bolometric luminosity, denoted by L<sub>Bol</sub>, absolute magnitude, the widely known event horizon and [[singularity]], Hawking radiation and Hawking points, and active galactic nuclei, etc.  <ref>Daly, R. A. (2020). [https://sites.psu.edu/rdaly/476-2/ New Methods of Measuring Black Hole Spin and Accretion Disk Properties], Caltech Tea Talk, The Pennsylvania State University.</ref> The stellar remnant belief of black hole postulates that the event horizon is the threshold in space where the gravitational force surpasses the velocity of light, and relativity theory postulates the singularity being a point of infinite spacetime curvature. To an outside observer, objects falling into a black hole will take an [[infinity|infinite]] amount of time to reach the [[event horizon]].  The amount of time as measured by the object falling into the black hole, however, can be very short.


=== Metrics in the Quantum Realm ===
=== Metrics in the Quantum Realm ===

Revision as of 11:38, 28 July 2023

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
A black hole at the center of a galaxy, NASA image

The theory of black holes was conceived by Karl Schwarzschild during World War II. [1] The term black hole for the then-theoretical celestial object was coined later by John Wheeler. [2] Black holes are thought to have the escape velocity faster than the speed of light, which means not even light can escape their gravitational fields. Currently, most astronomical scientists have reached the consensus that black holes exist at the center of every galaxy.

Physical Properties

Black holes can only be described by their spin, charge, and angular momentum, with other attributes derived from the basic properties. They are thought in classical cosmology, i.e. the Big Bang model, to be the result of collapsing matter following the explosion of large stars into supernovae. Therefore, the mass of a black hole is often depicted in terms of solar mass, denoted by m.ּּ

With their basic physical properties, four types of black holes have been proposed by theoretical physicists, with each type named in honor of them: [3]

Types of Black Hole
Name Charge Spin
Schwarzchild black hole No No
Kerr black hole No Yes
Kerr-Newman black hole Yes Yes
Reissner-Nordström black hole Yes No

The Big Bang Interpretations

The idea of the universe starting out from an atom originated from the Belgian physicist contemporary to Einstein's time, George Lemaître. On March 28, 1949, the English astronomer Fred Hoyle popularized the phrase the "Big Bang" during a defense. [4] The framework of the Big Bang Theory and nuclear physics was later constructed into the cosmic interpretations of the theoretical celestial object.

Two types of black holes are categorized in the Bang Bang model according to the origins, primordial black hole and the normative black hole from stellar remnants. Primordial black holes are thought to be created not soon after the Big Bang, and the black holes from stellar remnants are thought to be created after a star exhausted its capacities for nuclear fusion. It is estimated that for a star to be capable of compaction into a singularity, it must have a mass greater than 3.4 times that of the Sun.

Characteristics

Quite a few features have been attributed to black holes in observational astronomy, among which include its Bolometric luminosity, denoted by LBol, absolute magnitude, the widely known event horizon and singularity, Hawking radiation and Hawking points, and active galactic nuclei, etc. [5] The stellar remnant belief of black hole postulates that the event horizon is the threshold in space where the gravitational force surpasses the velocity of light, and relativity theory postulates the singularity being a point of infinite spacetime curvature. To an outside observer, objects falling into a black hole will take an infinite amount of time to reach the event horizon. The amount of time as measured by the object falling into the black hole, however, can be very short.

Metrics in the Quantum Realm

Kerr's exact solutions of general relativity postulate that rotating black holes, namely Kerr and Kerr-Newman black holes, have two event horizons. Beyond the outer event horizon are the inner event horizon and ergoregions. [6] The ergoregions are composed of the outer ergosphere and inner ergosphere, beyond which are the ring singularity and singularity. [7]

The astronomical developments in black hole detection started the quantization. James M. Bardeen, Brandon D. Carter, and Stephen W. Hawking formulated four laws concerning black hole thermodynamics for the foundation of cryogenic technology applied in quantum sensing. [8] Even though Hawking proposed black hole evaporation theories before, contradictions emerged with the observational confirmation of Hawking's surface area law by Isi and his colleagues, after gravitational wave detection by Laser Interferometer Gravitational-Wave Observatory (LIGO) located in the U.S. became feasible. [9]

Observation of Black Holes

The concentration of mass by black holes with their basic properties has made gravitational lensing the optimal technique for black hole observation. [10] A multitude of spectra has been adopted in the surveys, and observation by gravitational wave detection with interferometry has been the recent development since 2015, apart from Virgo in Italy. [11]

In 2019, a direct image of a black hole was made using the Event Horizon Telescope, which is actually a worldwide network of radio telescopes. This black hole is 6.5 billion times more massive than the Sun and located 55 million light-years away in the galaxy M87.

  1. Schnittman, J. (2019). A brief history of black holes, Astronomy magazine.
  2. Overbye, D. (2008). John A. Wheeler, Physicist Who Coined the Term ‘Black Hole,’ Is Dead at 96, New York Times.
  3. Pachankis, Y. I. (2022). Neutron Number Asymmetry in Proton Decay Momentum, Journal of Agricultural, Earth & Environmental Sciences, 1(1): 1-9. Bibcode: 2022JAEES...1....1P
  4. Wood, C. (2019). The Big Bang Theory: How the Universe Began, Live Science.
  5. Daly, R. A. (2020). New Methods of Measuring Black Hole Spin and Accretion Disk Properties, Caltech Tea Talk, The Pennsylvania State University.
  6. Herman, R. L. (2021). Notes on the Kerr Metric, PHY 490 The Physics of Black Holes, University of North Carolina Wilmington.
  7. Sutter, P. (2022). Are black holes wormholes?, Live Science.
  8. Bardeen, J. M., Carter, B., and Hawking, S. W. (1973). The four laws of black hole mechanics. Communications in Mathematical Physics, 31(2): 161-170. DOI: 10.1007/BF01645742
  9. Chu, J. (2021). Physicists observationally confirm Hawking’s black hole theorem for the first time, MIT News.
  10. Gravitational Lensing, Space Telescope Science Institute.
  11. What is LIGO?, LIGO Caltech.