Vascular disease: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Robert Badgett
imported>Robert Badgett
Line 58: Line 58:


==Prognosis==
==Prognosis==
Many new biomarkers have been studied for their ability to improvement upon prediction based on traditional risk factors.<ref name="pmid17182988">{{cite journal |author=Wang TJ, Gona P, Larson MG, ''et al'' |title=Multiple biomarkers for the prediction of first major cardiovascular events and death |journal=N. Engl. J. Med. |volume=355 |issue=25 |pages=2631–9 |year=2006 |month=December |pmid=17182988 |doi=10.1056/NEJMoa055373 |url=http://content.nejm.org/cgi/pmidlookup?view=short&pmid=17182988 |issn=}}</ref>
{| class="wikitable"
|+ Prediction of vascular disease
! &nbsp;!! Outcome |!! Result
|-
| Framingham plus ankle brachial index|| &nbsp;|| Total reclassification: 19% to 36%<ref name="pmid18612117">{{cite journal |author=Fowkes FG, Murray GD, Butcher I, ''et al'' |title=Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis |journal=JAMA |volume=300 |issue=2 |pages=197–208 |year=2008 |month=July |pmid=18612117 |doi=10.1001/jama.300.2.197 |url=http://jama.ama-assn.org/cgi/pmidlookup?view=long&pmid=18612117 |issn=}}</ref>
|-
| Traditional risk factors (Framingham) plus [[c-reactive protein]]||"myocardial infarction and CHD-related death"||[[sensitivity and specificity|Net reclassification improvement]] = 12%<ref>{{Cite journal | doi = 10.1161/CIRCOUTCOMES.108.831198 | volume = 1 | issue = 2 | pages = 92-97 | last = Wilson | first = Peter W.F. | coauthors = Michael Pencina, Paul Jacques, Jacob Selhub, Ralph D'Agostino, Christopher J. O'Donnell | title = C-Reactive Protein and Reclassification of Cardiovascular Risk in the Framingham Heart Study | journal = Circ Cardiovasc Qual Outcomes | accessdate = 2008-12-08 | date = 2008-11-01 | url = http://circoutcomes.ahajournals.org/cgi/content/abstract/1/2/92 }}</ref>
|-
| Traditional risk factors (Framingham) plus [[c-reactive protein]] and family history of [[myocardial infarction|MI]] before age 60 ([http://www.reynoldsriskscore.org/ Reynolds Score])||All cardiovascular events|| [[sensitivity and specificity|Net reclassification improvement]] = 7% (in men)<ref name="pmid18997194">{{cite journal |author=Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR |title=C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men |journal=Circulation |volume=118 |issue=22 |pages=2243–51, 4p following 2251 |year=2008 |month=November |pmid=18997194 |doi=10.1161/CIRCULATIONAHA.108.814251 |url=http://circ.ahajournals.org/cgi/pmidlookup?view=long&pmid=18997194 |issn=}}</ref>
|}
Regarding coronary heart disease, about 3/4 of its prognosis is due to three risk factors: [[hypercholesterolemia]] (total cholesterol > 182 mg/dL [4.71 mmol/L]), [[hypertension]] (diastolic blood pressure > 90 mm Hg), and cigarette smoking.<ref name="pmid11732929">{{cite journal |author=Magnus P, Beaglehole R |title=The real contribution of the major risk factors to the coronary epidemics: time to end the "only-50%" myth |journal=Arch. Intern. Med. |volume=161 |issue=22 |pages=2657–60 |year=2001 |pmid=11732929 |doi= |url=http://archinte.ama-assn.org/cgi/pmidlookup?view=long&pmid=11732929 |issn=}}</ref>
===Framingham risk===
===Framingham risk===
The Framingham risk uses clinical risk factors that are combined in an equation developed from the Framingham Heart Study to calculate prognosis. An online calculator is available at http://hp2010.nhlbihin.net/atpiii/calculator.asp.
The Framingham risk uses clinical risk factors that are combined in an equation developed from the Framingham Heart Study to calculate prognosis. An online calculator is available at http://hp2010.nhlbihin.net/atpiii/calculator.asp.
Line 67: Line 82:
===Reynolds Score===
===Reynolds Score===
The Reynolds score has been proposed as an improvement to the Framingham risk by incorporating the [[c-reactive protein]].<ref name="pmid17299196">{{cite journal |author=Ridker PM, Buring JE, Rifai N, Cook NR |title=Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score |journal=JAMA |volume=297 |issue=6 |pages=611–9 |year=2007 |month=February |pmid=17299196 |doi=10.1001/jama.297.6.611 |url=http://jama.ama-assn.org/cgi/pmidlookup?view=long&pmid=17299196 |issn=}}</ref><ref name="pmid18997194">{{cite journal |author=Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR |title=C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men |journal=Circulation |volume=118 |issue=22 |pages=2243–51, 4p following 2251 |year=2008 |month=November |pmid=18997194 |doi=10.1161/CIRCULATIONAHA.108.814251 |url=http://circ.ahajournals.org/cgi/pmidlookup?view=long&pmid=18997194 |issn=}}</ref> An online calculator is at http://www.reynoldsriskscore.org/.
The Reynolds score has been proposed as an improvement to the Framingham risk by incorporating the [[c-reactive protein]].<ref name="pmid17299196">{{cite journal |author=Ridker PM, Buring JE, Rifai N, Cook NR |title=Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score |journal=JAMA |volume=297 |issue=6 |pages=611–9 |year=2007 |month=February |pmid=17299196 |doi=10.1001/jama.297.6.611 |url=http://jama.ama-assn.org/cgi/pmidlookup?view=long&pmid=17299196 |issn=}}</ref><ref name="pmid18997194">{{cite journal |author=Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR |title=C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men |journal=Circulation |volume=118 |issue=22 |pages=2243–51, 4p following 2251 |year=2008 |month=November |pmid=18997194 |doi=10.1161/CIRCULATIONAHA.108.814251 |url=http://circ.ahajournals.org/cgi/pmidlookup?view=long&pmid=18997194 |issn=}}</ref> An online calculator is at http://www.reynoldsriskscore.org/.
 
apparently healthy people due to the theory that chronic inflammation precedes [[atherosclerosis]].<ref name="pmid16818927">Lloyd-Jones DM, Liu K, Tian L, Greenland P. [http://annals.org/cgi/content/full/145/1/35 Narrative review: Assessment of C-reactive protein in risk prediction for cardiovascular disease]. Ann Intern Med. 2006 Jul 4;145(1):35-42. PMID 16818927</ref>
apparently healthy people due to the theory that chronic inflammation precedes [[atherosclerosis]].<ref name="pmid16818927">Lloyd-Jones DM, Liu K, Tian L, Greenland P. [http://annals.org/cgi/content/full/145/1/35 Narrative review: Assessment of C-reactive protein in risk prediction for cardiovascular disease]. Ann Intern Med. 2006 Jul 4;145(1):35-42. PMID 16818927</ref>



Revision as of 16:14, 25 February 2009

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Template:TOC-right In medicine, vascular disease is "pathological processes involving any of the blood vessels in the cardiac or peripheral circulation. They include diseases of arteries; veins; and rest of the vasculature system in the body."[1] Examples of vascular diseases include coronary heart disease, cerebrovascular disorders, and peripheral vascular disease.

Prevention

Exercise

Separate to the question of the benefits of exercise; it is unclear whether doctors should spend time counseling patients to exercise. The U.S. Preventive Services Task Force (USPSTF), based on a systematic review of randomized controlled trials, found 'insufficient evidence' to recommend that doctors counsel patients on exercise.[2] However, the American Heart Association, based on a non-systematic review, recommends that doctors counsel patients on exercise [3]

Preventive diets

Dietary changes can potentially lead to large changes in the cholesterol.[4]

Aspirin

Aspirin, in doses of less than 75 to 81 mg/d[5], can reduce the incidence of cardiovascular events.[6] The U.S. Preventive Services Task Force 'strongly recommends that clinicians discuss aspirin chemoprevention with adults who are at increased risk for coronary heart disease'.[7] The Task Force defines increased risk as 'Men older than 40 years of age, postmenopausal women, and younger persons with risk factors for coronary heart disease (for example, hypertension, diabetes, or smoking) are at increased risk for heart disease and may wish to consider aspirin therapy'. More specifically, high-risk persons are 'those with a 5-year risk ≥ 3%'. A risk calculator is available.[8]

Regarding healthy women, the more recent Women's Health Study randomized controlled trial found insignificant benefit from aspirin in the reduction of cardiac events; however there was a significant reduction in stroke.[9] Subgroup analysis showed that all benefit was confined to women over 65 years old.[9] In spite of the insignificant benefit for women < 65 years old, recent clinical practice guidelines by the American Heart Association recommend to 'consider' aspirin in 'healthy women' <65 years of age 'when benefit for ischemic stroke prevention is likely to outweigh adverse effects of therapy'.[10]

Anticholesteremic agents

For more information, see: Anticholesteremic agent.

The U.S. Preventive Services Task Force (USPSTF) estimated that after 5 to 7 years of treatment with statins, the relative risk reduction of coronary heart disease events is decreased by approximately 30%[11][12]. More recently, a meta-analysis reported an almost identical relative risk reduction of 29.2% in low risk patients treated for 4.3 years [13]. A relative risk reduction of 19% in coronary mortality was found in a meta-analysis of patients at all levels of risk.[14]

Various clinical practice guidelines have addressed the treatment of hypercholesterolemia. The American College of Physicians has addressed hypercholesterolemia in patients with diabetes [15]. Their recommendations are:

  • Recommendation 1: Lipid-lowering therapy should be used for secondary prevention of cardiovascular mortality and morbidity for all patients (both men and women) with known coronary artery disease and type 2 diabetes.
  • Recommendation 2: Statins should be used for primary prevention against macrovascular complications in patients (both men and women) with type 2 diabetes and other cardiovascular risk factors.
  • Recommendation 3: Once lipid-lowering therapy is initiated, patients with type 2 diabetes mellitus should be taking at least moderate doses of a statin (the accompanying evidence report states "simvastatin, 40 mg/d; pravastatin, 40 mg/d; lovastatin, 40 mg/d; atorvastatin, 20 mg/d; or an equivalent dose of another statin")[16].
  • Recommendation 4: For those patients with type 2 diabetes who are taking statins, routine monitoring of liver function tests or muscle enzymes is not recommended except in specific circumstances.

The National Cholesterol Education Program revised their guidelines[17]; however, their 2004 revisions have been criticized for use of nonrandomized, observational data.[18]

Antioxidant vitamins

For more information, see: Antioxidant.

Antioxidant vitamins are not beneficial.

Omega-3 fatty acids (fish oil)

For more information, see: Fish oil.


Omega-3 fatty acids may have small benefit[19][20], but results of randomized controlled trials are not consistent. The benefit may be at conferred on 2% of patients who take omega-3 fatty acids.[19]

Homocysteine lowering

Lowering of homocystein blood concentration with folic acid, vitamin B12, and vitamin B6 is not beneficial.

A meta-analysis concluded that lowering homocysteine with folic acid and other supplements may reduce stroke.[21] However, the two largest randomized controlled trials included in the meta-analysis had conflicting results. Lonn reported positive results[22]; whereas the trial by Toole was negative.[23]

Since the meta-analysis, two additional trials have shown no reduction in cardiovascular endpoint despite successfully lowering the plasma homocysteine level.[24][25]

Evidence table

Interventions to prevent all-cause mortality
among patients at risk of vascular disease
  Study type Relative risk ratio or odds ratio
for all-cause mortality
Aspirin[6] Systematic review of 6 RCTs through 2005
(Does not include negative JPAD trial[26])
Men OR=0.93
Women OR=0.94
Statin[13] Systematic review of 7 RCTs through 2005
(Does not include positive Jupiter[27] or negative GISSI-HF[28] trials)
RR=0.92
Fish oil[29] Systematic review of 12 RCTs through 2006
(Does not include positive GISSI-HF[20])
OR=0.92
No systematic review reported a significant decrease in mortality.

Prognosis

Many new biomarkers have been studied for their ability to improvement upon prediction based on traditional risk factors.[30]

Prediction of vascular disease
  Outcome Result
Framingham plus ankle brachial index   Total reclassification: 19% to 36%[31]
Traditional risk factors (Framingham) plus c-reactive protein "myocardial infarction and CHD-related death" Net reclassification improvement = 12%[32]
Traditional risk factors (Framingham) plus c-reactive protein and family history of MI before age 60 (Reynolds Score) All cardiovascular events Net reclassification improvement = 7% (in men)[33]

Regarding coronary heart disease, about 3/4 of its prognosis is due to three risk factors: hypercholesterolemia (total cholesterol > 182 mg/dL [4.71 mmol/L]), hypertension (diastolic blood pressure > 90 mm Hg), and cigarette smoking.[34]

Framingham risk

The Framingham risk uses clinical risk factors that are combined in an equation developed from the Framingham Heart Study to calculate prognosis. An online calculator is available at http://hp2010.nhlbihin.net/atpiii/calculator.asp.

Ankle brachial index (ABI)

For more information, see: Ankle brachial index.

A meta-analysis concluded that "measurement of the ABI may improve the accuracy of cardiovascular risk prediction beyond the FRS (Framingham risk score)".[31]

Reynolds Score

The Reynolds score has been proposed as an improvement to the Framingham risk by incorporating the c-reactive protein.[35][33] An online calculator is at http://www.reynoldsriskscore.org/.

apparently healthy people due to the theory that chronic inflammation precedes atherosclerosis.[36]

C-reactive protein (CRP)

For more information, see: C-reactive protein.

The CRP is part of the Reynolds score.

References

  1. Anonymous (2024), Vascular disease (English). Medical Subject Headings. U.S. National Library of Medicine.
  2. (2002) "Behavioral counseling in primary care to promote physical activity: recommendation and rationale". Ann. Intern. Med. 137 (3): 205-7. PMID 12160370[e]
  3. Thompson PD, Buchner D, Pina IL, et al (2003). "Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity)". Circulation 107 (24): 3109-16. DOI:10.1161/01.CIR.0000075572.40158.77. PMID 12821592. Research Blogging. Summary at guidelines.gov
  4. McMurry MP, Cerqueira MT, Connor SL, Connor WE (1991). "Changes in lipid and lipoprotein levels and body weight in Tarahumara Indians after consumption of an affluent diet". N. Engl. J. Med. 325 (24): 1704-8. PMID 1944471[e]
  5. Campbell CL, Smyth S, Montalescot G, Steinhubl SR (2007). "Aspirin dose for the prevention of cardiovascular disease: a systematic review". JAMA 297 (18): 2018-24. DOI:10.1001/jama.297.18.2018. PMID 17488967. Research Blogging.
  6. 6.0 6.1 Berger J, Roncaglioni M, Avanzini F, Pangrazzi I, Tognoni G, Brown D (2006). "Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials". JAMA 295 (3): 306-13. DOI:10.1001/jama.295.3.306. PMID 16418466. Research Blogging.
  7. (2002) "Aspirin for the primary prevention of cardiovascular events: recommendation and rationale". Ann Intern Med 136 (2): 157-60. PMID 11790071.
  8. http://www.med-decisions.com/
  9. 9.0 9.1 Ridker P, Cook N, Lee I, Gordon D, Gaziano J, Manson J, Hennekens C, Buring J (2005). "A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women". N Engl J Med 352 (13): 1293-304. DOI:10.1056/NEJMoa050613. PMID 15753114. Research Blogging.
  10. http://circ.ahajournals.org/cgi/content/abstract/CIRCULATIONAHA.107.181546v1
  11. Pignone MP, Phillips CJ, Atkins D, Teutsch SM, Mulrow CD, Lohr KN (2001). "Screening and treating adults for lipid disorders". American Journal of Preventive Medicine 20 (3 Suppl): 77–89. PMID 11306236[e]
  12. Screening for Lipid Disorders: Recommendations and Rationale. Retrieved on 2007-10-17.
  13. 13.0 13.1 Thavendiranathan P, Bagai A, Brookhart M, Choudhry N (2006). "Primary prevention of cardiovascular diseases with statin therapy: a meta-analysis of randomized controlled trials". Arch Intern Med 166 (21): 2307-13. DOI:10.1001/archinte.166.21.2307. PMID 17130382. Research Blogging.
  14. Baigent C, Keech A, Kearney PM, et al (2005). "Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins". Lancet 366 (9493): 1267-78. DOI:10.1016/S0140-6736(05)67394-1. PMID 16214597. Research Blogging.
  15. Snow V, Aronson M, Hornbake E, Mottur-Pilson C, Weiss K (2004). "Lipid control in the management of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians". Ann Intern Med 140 (8): 644-9. PMID 15096336.
  16. Vijan S, Hayward RA (2004). "Pharmacologic lipid-lowering therapy in type 2 diabetes mellitus: background paper for the American College of Physicians". Ann. Intern. Med. 140 (8): 650-8. PMID 15096337[e]
  17. Grundy SM, Cleeman JI, Merz CN, Brewer HB, Clark LT, Hunninghake DB, Pasternak RC, Smith SC, Stone NJ (2004). "Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines". J. Am. Coll. Cardiol. 44 (3): 720-32. DOI:10.1016/j.jacc.2004.07.001. PMID 15358046. Research Blogging.
  18. Hayward RA, Hofer TP, Vijan S (2006). "Narrative review: lack of evidence for recommended low-density lipoprotein treatment targets: a solvable problem". Ann. Intern. Med. 145 (7): 520-30. PMID 17015870[e]
  19. 19.0 19.1 Yokoyama M, Origasa H, Matsuzaki M, et al (2007). "Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis". Lancet 369 (9567): 1090–8. DOI:10.1016/S0140-6736(07)60527-3. PMID 17398308. Research Blogging.
  20. 20.0 20.1 Gissi-Hf Investigators (August 2008). "Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial". Lancet. DOI:10.1016/S0140-6736(08)61239-8. PMID 18757090. Research Blogging. Cite error: Invalid <ref> tag; name "pmid18757090" defined multiple times with different content
  21. Wang X, Qin X, Demirtas H, et al (2007). "Efficacy of folic acid supplementation in stroke prevention: a meta-analysis". Lancet 369 (9576): 1876-82. DOI:10.1016/S0140-6736(07)60854-X. PMID 17544768. Research Blogging. PMID 17544768
  22. Lonn E, Yusuf S, Arnold MJ, et al (2006). "Homocysteine lowering with folic acid and B vitamins in vascular disease". N. Engl. J. Med. 354 (15): 1567-77. DOI:10.1056/NEJMoa060900. PMID 16531613. Research Blogging. PMID 16531613
  23. Toole JF, Malinow MR, Chambless LE, et al (2004). "Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial". JAMA 291 (5): 565-75. DOI:10.1001/jama.291.5.565. PMID 14762035. Research Blogging. PMID 14762035
  24. ""[e]
  25. Ebbing M, Bleie O, Ueland PM, Nordrehaug JE, Nilsen DW, Vollset SE, et al. Mortality and Cardiovascular Events in Patients Treated With Homocysteine-Lowering B Vitamins After Coronary Angiography: A Randomized Controlled Trial. JAMA. 2008 Aug 20;300(7):795-804.
  26. Ogawa H, Nakayama M, Morimoto T, et al (November 2008). "Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial". JAMA 300 (18): 2134–41. DOI:10.1001/jama.2008.623. PMID 18997198. Research Blogging.
  27. Ridker PM, Danielson E, Fonseca FA, et al (November 2008). "Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein". N. Engl. J. Med. 359 (21): 2195–207. DOI:10.1056/NEJMoa0807646. PMID 18997196. Research Blogging.
  28. Gissi-HF Investigators, Tavazzi L, Maggioni AP, et al (October 2008). "Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial". Lancet 372 (9645): 1231–9. DOI:10.1016/S0140-6736(08)61240-4. PMID 18757089. Research Blogging.
  29. Cite error: Invalid <ref> tag; no text was provided for refs named pmid19106137
  30. Wang TJ, Gona P, Larson MG, et al (December 2006). "Multiple biomarkers for the prediction of first major cardiovascular events and death". N. Engl. J. Med. 355 (25): 2631–9. DOI:10.1056/NEJMoa055373. PMID 17182988. Research Blogging.
  31. 31.0 31.1 Fowkes FG, Murray GD, Butcher I, et al (July 2008). "Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis". JAMA 300 (2): 197–208. DOI:10.1001/jama.300.2.197. PMID 18612117. Research Blogging.
  32. Wilson, Peter W.F.; Michael Pencina, Paul Jacques, Jacob Selhub, Ralph D'Agostino, Christopher J. O'Donnell (2008-11-01). "C-Reactive Protein and Reclassification of Cardiovascular Risk in the Framingham Heart Study". Circ Cardiovasc Qual Outcomes 1 (2): 92-97. DOI:10.1161/CIRCOUTCOMES.108.831198. Retrieved on 2008-12-08. Research Blogging.
  33. 33.0 33.1 Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR (November 2008). "C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men". Circulation 118 (22): 2243–51, 4p following 2251. DOI:10.1161/CIRCULATIONAHA.108.814251. PMID 18997194. Research Blogging.
  34. Magnus P, Beaglehole R (2001). "The real contribution of the major risk factors to the coronary epidemics: time to end the "only-50%" myth". Arch. Intern. Med. 161 (22): 2657–60. PMID 11732929[e]
  35. Ridker PM, Buring JE, Rifai N, Cook NR (February 2007). "Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score". JAMA 297 (6): 611–9. DOI:10.1001/jama.297.6.611. PMID 17299196. Research Blogging.
  36. Lloyd-Jones DM, Liu K, Tian L, Greenland P. Narrative review: Assessment of C-reactive protein in risk prediction for cardiovascular disease. Ann Intern Med. 2006 Jul 4;145(1):35-42. PMID 16818927