G-protein-coupled receptor kinase

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In biochemistry and signal transduction, G-protein-coupled receptor kinases are a "family of serine-threonine kinases that are specific for G-protein-coupled receptors. They are regulatory proteins that play a role in G-protein-coupled receptor desensitization."[1] "G protein-coupled receptor kinases (GRKs) play an important role in phosphorylating and regulating the activity of a variety of G protein-coupled receptors."[2]

In signal transduction, cell surface receptors may activate second messenger systems such as adenyl cyclase-cyclic AMP and cyclic GMP which then may activate protein kinases such as G-protein-coupled receptor kinase which then affect downstream targets (see figure).[3]

Classification

  • G-protein-coupled receptor kinase 1 (GRK1) is "a protein-serine-threonine kinase that is found in photoreceptor cells. It mediates light-dependent phosphorylation of rhodopsin and plays an important role in phototransduction."[4]
  • beta-adrenergic receptor kinases
    • G-protein-coupled receptor kinase 2 (GRK2) , also called beta-adrenergic receptor kinase 1 (ADRBK1), is "a ubiquitously expressed g-protein-coupled receptor kinase subtype that has specificity for the agonist-occupied form of beta-adrenergic receptors. It may play an essential role in regulating myocardial contractile response."[5]
    • G-protein-coupled receptor kinase 3 (GRK3) , also called beta-adrenergic receptor kinase 2 (ADRBK2), is "a ubiquitously expressed g-protein-coupled receptor kinase subtype that has specificity for the agonist-occupied form of beta-adrenergic receptors and a variety of other g-protein-coupled-receptors. Although it is highly homologous to g-protein-coupled receptor kinase 2, it is not considered to play an essential role in regulating myocardial contractile response."[6]
  • G-protein-coupled receptor kinase 4 (GRK4) is "a G-protein-coupled receptor kinase subtype that is primarily expressed in the testes and brain. Variants of this subtype exist due to multiple alternative splicing of its mRNA."[7]
  • G-protein-coupled receptor kinase 5 (GRK5) is "a g-protein-coupled receptor kinase subtype that is primarily expressed in the myocardium and may play a role in the regulation of cardiac function."[8]

Pharmacogenomics

Heart failure

Regarding the treatment of heart failure, there is conflicting evidence whether adrenergic beta-antagonists are as effective in African-American patients as in Anglo patients.[9] This may be due to a polymorphism in African-American patients of the G protein–coupled cell surface receptor kinase 5 (GRK5) that confers a natural "genetic beta-blockade".[10][11]

G protein–coupled cell surface receptor kinase 2 (GRK2) genetic polymorphisms may also affect the response to adrenergic beta-antagonists.[12]

Asthma

Genetic polymorphisms may affect the response to adrenergic beta-antagonists by patients of African descent.[13]

References

  1. Anonymous (2024), G-protein-coupled receptor kinase (English). Medical Subject Headings. U.S. National Library of Medicine.
  2. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 600870. World Wide Web URL: http://omim.org/.
  3. Lodish, Harvey F. (1999). “20.1. Overview of Extracellular Signaling”, Molecular cell biology. New York: Scientific American Books. ISBN 0-7167-3136-3. 
  4. Anonymous (2024), G-protein-coupled receptor kinase 1 (English). Medical Subject Headings. U.S. National Library of Medicine.
  5. Anonymous (2024), G-protein-coupled receptor kinase 2 (English). Medical Subject Headings. U.S. National Library of Medicine.
  6. Anonymous (2024), G-protein-coupled receptor kinase 3 (English). Medical Subject Headings. U.S. National Library of Medicine.
  7. Anonymous (2024), G-protein-coupled receptor kinase 4 (English). Medical Subject Headings. U.S. National Library of Medicine.
  8. Anonymous (2024), G-protein-coupled receptor kinase 5 (English). Medical Subject Headings. U.S. National Library of Medicine.
  9. Shekelle PG, Rich MW, Morton SC, et al (2003). "Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials". J. Am. Coll. Cardiol. 41 (9): 1529–38. PMID 12742294[e]
  10. Liggett SB, Cresci S, Kelly RJ, et al. (May 2008). "A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure". Nat. Med. 14 (5): 510–7. DOI:10.1038/nm1750. PMID 18425130. PMC 2596476. Research Blogging.
  11. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 600870. World Wide Web URL: http://omim.org/.
  12. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 109635. World Wide Web URL: http://omim.org/.
  13. Wang WC, Mihlbachler KA, Bleecker ER, Weiss ST, Liggett SB (August 2008). "A polymorphism of G-protein coupled receptor kinase5 alters agonist-promoted desensitization of beta2-adrenergic receptors". Pharmacogenet. Genomics 18 (8): 729–32. DOI:10.1097/FPC.0b013e32830967e9. PMID 18622265. Research Blogging.