Lambert W function
The Lambert W function is used in mathematics to solve equations in which the unknown appears both outside and inside an exponential function or a logarithm, such as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3x+2=e^x} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\ln(4x)} . Such equations cannot otherwise, except in special cases, be solved explicitly in terms of algebraic operations, exponentials and logarithms.
Definition
The Lambert W function is defined as the multivalued function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W} that satisfies
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = W(z)e^{W(z)}\;}
for any complex number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle z} . Equivalently, it may be defined as the inverse function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(w) = we^w} . An equation can be solved by rewriting it in the canonical form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C = we^w} , after which the solution is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle w = W(C)} . The multivaluedness of the Lambert W function means that such an equation generally has multiple solutions. The graph of the Lambert W function in the real numbers looks as follows:
The function has two real branches in the interval Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1/e < x < 0} which join at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = -1/e} . Concretely, this means that the equation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = w e^w} has two real solutions if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1/e < x < 0} . For example, if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = -0.15} (which is about half way between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1/e} and 0), there is one solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle w_0 \approx -0.17} that lies on the blue graph and another solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle w_{-1} \approx -3.0} that lies on the dashed red graph.
The single-valued function corresponding to the blue graph for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle -1/e\, \le \, x \,< \,\infty} is called the principal branch of the Lambert W function and is denoted by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_0} . The single-valued function corresponding to the dashed red graph for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle -1/e \, \le \, x \, < \, 0} is called the negative branch, denoted by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_{-1}} . The negative branch asymptotically approaches Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle -\infty} as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle x \to 0} while the principal branch grows slowly but unboundedly (asymptotically like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \ln x} ) as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle x \to \infty} .
The behavior of the Lambert W function in the complex numbers is more complicated. Like the complex logarithm, it has infinitely many branches; they are conventionally labeled Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_k} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} runs over all the integers. The details are discussed for instance in Corless et al.[1]
Besides Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W(-1/e) = -1} , the Lambert W function has the special values Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_0(0) = 0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_0(e) = 1} . The value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle W_0(1) = 0.567143\ldots} is called the omega constant.
Examples of use
Valluri et al. give the following example of how the Lambert W function can be used to solve equations from physics.[2] Planck's law states that the radiation intensity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I} at wavelength Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} from a black body at temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} ,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I(\lambda, T) = \frac{8\pi h c/\lambda^5}{\exp(hc/\lambda k T)-1},}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} is Planck's constant, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} is Boltzmann's constant and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} is the speed of light. Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} appears both inside and outside an exponential. Next, Wien's displacement law states that the maximum intensity is attained at the wavelength Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_{max} = b/T} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} is a quantity called Wien's displacement constant. Using the Lambert W function, we can give an explicit formula for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} .
To derive Wien's displacement law, we wish to solve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \partial I / \partial \lambda = 0} . If we calculate the partial derivative, simplify, and perform the substitution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=hc/\lambda k T} , we obtain the equation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x-5)e^x = -5} . To write this in canonical form for application of the Lambert W function, we substitute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w = x-5} and multiply both sides of the resulting equation by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{-5}} . This leaves Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w e^w = -5e^{-5}} , with the nonzero solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w = W_0(-5e^{-5})} . Substituting back the expression for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , we obtain Wien's displacement law with the value for Wien's constant given explicitly by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = \frac{hc/k}{5+W_0(-5e^{-5})} = 2.893 \times 10^{-3} \, \mathrm{m} \, \mathrm{K}.}
Calculus
The principal branch of the Lambert W function has the Taylor series expansion
around , which can be obtained the via Lagrange inversion theorem. Due to the singularity at , and as can be proved with the ratio test, the series converges for . The Lambert W function has the derivative
which is infinite at the branch point . Its antiderivative is given by
It is also possible to find antiderivatives of more complicated expressions containing the Lambert W function. See Corless et al. for an overview.[1]
History and application
Equations of the kind that can be solved analytically with the Lambert W function are common in mathematics and science, yet the utility of such a function was not realized until recently. The Lambert W function was introduced in the 1980's as a function in the Maple computer algebra system, whose interface required an explicit notation for solutions of equations. The function's history highlights the importance of good mathematical notation: due to previously not being recognized as a function in its own right, it had not been studied systematically, despite its most important properties requiring only elementary complex analysis. An account of the function and its history that helped popularize it is given in a 1996 paper by R. M. Corless et al. (with Donald Knuth a notable co-author).[1]
The basic theory behind the Lambert W function was investigated in 1779 by Leonhard Euler.[3] The Maple developers chose the name of Johann Heinrich Lambert instead of Euler's since Euler had referenced work by Lambert in his paper, and possibly because "naming yet another function after Euler would not be useful".[4]
Since its introduction, the Lambert W function has been applied to problems ranging from quantum physics to population dynamics to the complexity of algorithms. Cranmer[5] discusses the application of the Lambert W function in solar wind physics and writes in the conclusion: "The Lambert W function used in these solutions was defined and publicized only about a decade ago, but it has rapidly become a convenient tool for mathematical physicists. The elegance of explicit solutions to equations thought previously to be expressible only implicitly is clear, but there also are many practical benefits to having explicit solutions as well."
See also
References
- ↑ 1.0 1.1 1.2 Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J. & Knuth, D. E. (1996). "On the Lambert W function". Adv. Computational Maths. 5, 329–359
- ↑ Valluri, S. R., Jeffrey, D. R. & Corless, R. M. (2000). "Some applications of the Lambert W function to physics". Can. J. Phys. 78, 823–831
- ↑ Euler, L. (1779). "De serie Lambertina plurimisque eius insignibus proprietatibus". Originally published in Acta Academiae Scientarum Imperialis Petropolitinae 1779, 1783, 29–51. Also in Opera Omnia: Series 1, Volume 6, pp. 350 - 369. See E532 in The Euler Archive for a scanned copy.
- ↑ Corless, R., Jeffrey, D. & Knuth, D. E. (1997). "A Sequence of Series for the Lambert W Function", ISSAC: Proceedings of the ACM SIGSAM International Symposium on Symbolic and Algebraic Computation (formerly SYMSAM, SYMSAC, EUROSAM, EUROCAL) (also sometimes in cooperation with the Symbolic and Algebraic Manipulation Groupe in Europe (SAME))
- ↑ Cranmer, S. R. (2004). "New views of the solar wind with the Lambert W function". Am. J. Phys. 72, 1397