Petrochemicals: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Milton Beychok
No edit summary
imported>Milton Beychok
(→‎Feedstocks sources: Added a new subsection)
Line 15: Line 15:
The major hydrocarbon sources used in producing petrochemicals are:<ref name=Hatch/><ref name=HP/><ref name=AMAP>[http://www.tsp2.org/news/Butadiene%20Supply%20AMAP%20Update.pdf SBS Polymer Supply Outlook]</ref><ref>{{cite book|author=Jean-Pierre Favennec (Editor)|title= Petroleum Refining: Refinery Operation and Management|edition=|publisher=Editions Technip|year=2001|id=ISBN 2-7108-0801-3}}</ref>
The major hydrocarbon sources used in producing petrochemicals are:<ref name=Hatch/><ref name=HP/><ref name=AMAP>[http://www.tsp2.org/news/Butadiene%20Supply%20AMAP%20Update.pdf SBS Polymer Supply Outlook]</ref><ref>{{cite book|author=Jean-Pierre Favennec (Editor)|title= Petroleum Refining: Refinery Operation and Management|edition=|publisher=Editions Technip|year=2001|id=ISBN 2-7108-0801-3}}</ref>


*Methane, [[ethane]], [[propane]] and [[butane]]s: Obtained primarily from [[Natural gas processing|natural gas processing plants]].
:*Methane, [[ethane]], [[propane]] and [[butane]]s: Obtained primarily from [[Natural gas processing|natural gas processing plants]].
*[[Petroleum naphtha|Naphtha]] obtained from [[Petroleum refining processes|petroleum refineries]].
:*[[Petroleum naphtha|Naphtha]] obtained from [[Petroleum refining processes|petroleum refineries]].
*Benzene, toluene and xylenes, as a whole referred to as ''[[BTX]]'' and  primarily obtained from petroleum refineries by extraction from the reformate produced in [[Catalytic reforming|catalytic reformers]].
:*Benzene, toluene and xylenes, as a whole referred to as ''[[BTX]]'' and  primarily obtained from petroleum refineries by extraction from the reformate produced in [[Catalytic reforming|catalytic reformers]].
*[[Gas oil]] obtained from petroleum refineries.
:*[[Gas oil]] obtained from petroleum refineries.


Methane and BTX are used directly as feedstocks for producing petrochemicals. However, the ethane, propane, butanes, naphtha and gas oil serve as optional feedstocks for processing in steam-assisted [[thermal cracking]] plants known as ''[[steam crackers]]'' to produce these intermediate petrochemical feedstocks:  
Methane and BTX are used directly as feedstocks for producing petrochemicals. However, the ethane, propane, butanes, naphtha and gas oil serve as optional feedstocks for processing in steam-assisted [[thermal cracking]] plants known as ''[[steam crackers]]'' to produce these intermediate petrochemical feedstocks:  


*Ethylene
:*Ethylene
*Propylene
:*Propylene
*Butenes and butadiene
:*Butenes and butadiene
*Benzene
:*Benzene


In 2007, the amounts of ethylene and propylene produced in steam crackers were about 115 M[[Tonne|t]] (megatonnes) and 70 Mt, respectively.<ref>{{cite book|author=Hassan E. Alfadala, G.V. Rex Reklaitis and Mahmoud M. El-Halwagi (Editors)|title=Proceedings of the 1st Annual Gas Processing Symposium, Volume 1: January, 2009 - Qatar|edition=1st Edition|publisher=Elsevier Science|pages= pp. 402-414|year=2009|id=ISBN 0-444-53292-7}}</ref> The output ethylene capacity of large steam crackers ranged up to as much as 1.0 – 1.5 Mt per year.<ref>[http://www.petrochemistry.net/crackers-capacities-in-europe.html Crackers capacities] From the website of the [[Association of Petrochemicals Producers in Europe]] (APPE)</ref><ref>[http://www.technip.com/pdf/brochures/Ethylene.pdf Steam Cracking: Ethylene Production] (PDF page 3 of 12 pages)</ref>
In 2007, the amounts of ethylene and propylene produced in steam crackers were about 115 M[[Tonne|t]] (megatonnes) and 70 Mt, respectively.<ref>{{cite book|author=Hassan E. Alfadala, G.V. Rex Reklaitis and Mahmoud M. El-Halwagi (Editors)|title=Proceedings of the 1st Annual Gas Processing Symposium, Volume 1: January, 2009 - Qatar|edition=1st Edition|publisher=Elsevier Science|pages= pp. 402-414|year=2009|id=ISBN 0-444-53292-7}}</ref> The output ethylene capacity of large steam crackers ranged up to as much as 1.0 – 1.5 Mt per year.<ref>[http://www.petrochemistry.net/crackers-capacities-in-europe.html Crackers capacities] From the website of the [[Association of Petrochemicals Producers in Europe]] (APPE)</ref><ref>[http://www.technip.com/pdf/brochures/Ethylene.pdf Steam Cracking: Ethylene Production] (PDF page 3 of 12 pages)</ref>


The adjacent diagram depicts the all of the major petrochemical feedstocks and their sources.
The adjacent diagram depicts the all of the major petrochemical feedstocks and their sources.
===Worldwide usage of steam cracking feedstock sources and their effect on steam cracking yields===
As of 2004, the percentage of the worldwide steam cracking plants using each of the optional steam cracking feed sources was:
:*Ethane: 35%
:*Propane: 9%
:*Butanes: 3%
:*Naphtha: 45%
:*Gas oil: 5%
:*Other: 3 %
The effect of feedstock selection upon the yields of steam cracking products is summarized in the table below:
{| class = "wikitable" align="left"
|+ Steam cracking product yields versus feedstock <ref name=HP/>
!&nbsp;||colspan="5"|Product Yields
|-
! Feedstock<br/>source||Ethylene<br/>weight %||Propylene<br/>weight %||Butadiene<br/>weight %||[[Aromatics]]<sup> (a)</sup><br/>weight%||Other<sup> (b)</sup><br/>weight %
|- align="center"
| Ethane||84.0 ||1.4||1.4||0.4||12.8
|- align="center"
| Propane||45.0||14.0||2.0||3.5||35.5
|- align="center"
| Butane||44.0||17.3||3.0||3.4||32.3
|- align="center"
| Naphtha<sup> (c)</sup>||34.4||14.4||4.9||14.0||32.3
|- align="center"
| Gas oil<sup> (d)</sup>||25.5 ||13.5||4.9||12.8||43.3
|-
|colspan="6"|(a) Includes benzene, toluene, xylenes and any other aromatics.<br/>
(b) Includes [[hydrogen]], methane, butenes, non-aromatic portion of [[pyrolysis gasoline]] and [[fuel oil]]. <br/>
(c) Full-range naphtha (as differentiated from [[Petroleum naphtha|light or heavy naphtha]]).<br/>
(d) The portion of [[petroleum|petroleum crude oil]] that has a boiling range of about 250 to 550 °C (480 to 1020 °F).<br/> That encompasses the boiling range of  atmospheric gas oil (AGO) produced by the [[Petroleum_refining_processes/Draft#The crude oil distillation unit|atmospheric distillation]]<br/> of petroleum crude oil and the boiling range of vacuum gas oil (VGO) produced by the [[vacuum distillation]]<br/> of petroleum crude oil.
}


==Feedstocks and example petrochemical products==
==Feedstocks and example petrochemical products==

Revision as of 23:15, 10 July 2009

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Gallery [?]
 
This editable, developed Main Article is subject to a disclaimer.
File:Steam Cracker.jpg
(CC) Photo: Nova Chemicals Corporation
Steam cracking plant producing ethylene for petrochemical plant feedstock.
(PD) Image: Milton Beychok
Petrochemical feedstock sources.

Petrochemicals are chemical products made from the hydrocarbons present in raw natural gas and petroleum crude oil. The largest petrochemical manufacturing industries are to be found in the United States, Western Europe, Asia and the Middle East.

A relatively small number of hydyrocarbon feedstocks form the basis of the petrochemical industries, namely methane, ethylene, propylene, butenes, butadiene, benzene, toluene and xylenes.[1][2]

As of 2007, there were 2,980 operating petrochemical plants in 4,320 locations worldwide.[3] The petrochemical end products from those plants include plastics, soaps, detergents, solvents, paints, drugs, fertilizer, pesticides, explosives, synthetic textile fibers and rubbers, flooring and insulating materials and much more.

Petrochemicals are found in such common consumer products as aspirin, cars, clothing, compact discs, video tapes, electronic equipment, furniture, and a great many others.[4]

Feedstocks sources

The major hydrocarbon sources used in producing petrochemicals are:[1][2][5][6]

Methane and BTX are used directly as feedstocks for producing petrochemicals. However, the ethane, propane, butanes, naphtha and gas oil serve as optional feedstocks for processing in steam-assisted thermal cracking plants known as steam crackers to produce these intermediate petrochemical feedstocks:

  • Ethylene
  • Propylene
  • Butenes and butadiene
  • Benzene

In 2007, the amounts of ethylene and propylene produced in steam crackers were about 115 Mt (megatonnes) and 70 Mt, respectively.[7] The output ethylene capacity of large steam crackers ranged up to as much as 1.0 – 1.5 Mt per year.[8][9]

The adjacent diagram depicts the all of the major petrochemical feedstocks and their sources.

Worldwide usage of steam cracking feedstock sources and their effect on steam cracking yields

As of 2004, the percentage of the worldwide steam cracking plants using each of the optional steam cracking feed sources was:

  • Ethane: 35%
  • Propane: 9%
  • Butanes: 3%
  • Naphtha: 45%
  • Gas oil: 5%
  • Other: 3 %

The effect of feedstock selection upon the yields of steam cracking products is summarized in the table below:

Steam cracking product yields versus feedstock [2]
  Product Yields
Feedstock
source
Ethylene
weight %
Propylene
weight %
Butadiene
weight %
Aromatics (a)
weight%
Other (b)
weight %
Ethane 84.0 1.4 1.4 0.4 12.8
Propane 45.0 14.0 2.0 3.5 35.5
Butane 44.0 17.3 3.0 3.4 32.3
Naphtha (c) 34.4 14.4 4.9 14.0 32.3
Gas oil (d) 25.5 13.5 4.9 12.8 43.3
(a) Includes benzene, toluene, xylenes and any other aromatics.

(b) Includes hydrogen, methane, butenes, non-aromatic portion of pyrolysis gasoline and fuel oil.
(c) Full-range naphtha (as differentiated from light or heavy naphtha).
(d) The portion of petroleum crude oil that has a boiling range of about 250 to 550 °C (480 to 1020 °F).
That encompasses the boiling range of atmospheric gas oil (AGO) produced by the atmospheric distillation
of petroleum crude oil and the boiling range of vacuum gas oil (VGO) produced by the vacuum distillation
of petroleum crude oil. }

Feedstocks and example petrochemical products

The table below includes some representative examples of the petrochemical end products produced from the eight hydrocarbon feedstocks – methane, ethylene, propylene, butenes, butadiene, benzene, toluene and xylenes:

Feedstocks and example petrochemical products
methane ethylene propylene butenes and butadienes benzene toluene xylenes
hydrogen polyethylene polypropylene styrene-butadiene rubber (SBR) styrene benzoic acid phthalic anhydride
ammonia ethanol isopropanol methyl tert-butyl ether (MTBE) polystyrene toluene diisocyanate polyesters
methanol ethylene glycol propylene glycol polybutadiene phenol polyurethanes dimethyl terephthalate
methyl chloride vinyl acetate allyl chloride acrylonitrile-butadiene-styrene (ABS) cumene caprolactam terephthalate acid
carbon black perchloroethylene acrylonitrile polybutenes aniline nylons polyethylene terephthalate
acetylene polyvinyl acetate acrylic acid methyl ethyl ketone (MEK) adipic acid polyureas dioctyl phthalate
formaldehyde glycol ethers epoxy resins tert-butanol nylons  

References

  1. 1.0 1.1 Sami Matar and Lewis F. Hatch (2001). Chemistry of Petrochemical Processes. Gulf Professionsl Publishing. ISBN 0-0-88415-315-0. 
  2. 2.0 2.1 2.2 Staff (March 2001). "Petrochemical Processes 2001". Hydrocarbon Processing: pp. 71-246. ISSN 0887-0284.
  3. Petrochemical Industry – Worldwide
  4. Petrochemicals Chart From the website of the National Petrochemical & Refiners Association
  5. SBS Polymer Supply Outlook
  6. Jean-Pierre Favennec (Editor) (2001). Petroleum Refining: Refinery Operation and Management. Editions Technip. ISBN 2-7108-0801-3. 
  7. Hassan E. Alfadala, G.V. Rex Reklaitis and Mahmoud M. El-Halwagi (Editors) (2009). Proceedings of the 1st Annual Gas Processing Symposium, Volume 1: January, 2009 - Qatar, 1st Edition. Elsevier Science, pp. 402-414. ISBN 0-444-53292-7. 
  8. Crackers capacities From the website of the Association of Petrochemicals Producers in Europe (APPE)
  9. Steam Cracking: Ethylene Production (PDF page 3 of 12 pages)