NOTICE: Citizendium is still being set up on its newer server, treat as a beta for now; please see here for more. Citizendium - a community developing a quality comprehensive compendium of knowledge, online and free. Click here to join and contribute—free CZ thanks our previous donors. Donate here. Treasurer's Financial Report -- Thanks to our content contributors. --

# Polar coordinates

(Redirected from Polar coordinate)
Jump to: navigation, search

Main Article
Talk
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]

This editable Main Article is under development and not meant to be cited; by editing it you can help to improve it towards a future approved, citable version. These unapproved articles are subject to a disclaimer.

For an extension to three dimensions, see spherical polar coordinates.
CC Image
Two dimensional polar coordinates r and θ of vector 

In mathematics and physics, polar coordinates are two numbers—a distance and an angle—that specify the position of a point on a plane.

In their classical ("pre-vector") definition, polar coordinates give the position of a point P with respect to a given point O (the pole) and a given line (the polar axis) through O. One real number (r ) gives the distance of P to O and another number (θ) gives the angle of the line OP with the polar axis. Given r and θ, one determines P by constructing a circle of radius r with O as origin, and a line with angle θ measured counterclockwise from the polar axis. The point P is on the intersection of the circle and the line.

In modern vector language one identifies the plane with a real Euclidean space  that has a Cartesian coordinate system. The crossing of the Cartesian axes is on the pole, that is, O is the origin of the Cartesian system and the polar axis is identified with the x-axis of the Cartesian system. The line OP is generated by the vector



Hence we obtain the figure on the right where  is the position vector of the point P.

## Algebraic definition

The polar coordinates r and θ are related to the Cartesian coordinates x and y through



so that for r ≠ 0,



Bounds on the coordinates are: r ≥ 0 and 0 ≤ θ < 3600. Coordinate lines are: the circle (fixed r, all θ) and a half-line from the origin (fixed direction θ all r). The slope of the half-line is tanθ = y/x.

## Surface element

The infinitesimal surface element in polar coordinates is



The Jacobian J is the determinant



Example: the area A of a circle of radius R is given by