Partition (mathematics)

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, partition refers to two related concepts, in set theory and number theory.

Partition (set theory)

A partition of a set X is a collection of non-empty subsets ("parts") of X such that every element of X is in exactly one of the subsets in .

Hence a three-element set {a,b,c} has 5 partitions:

  • {a,b,c}
  • {a,b}, {c}
  • {a,c}, {b}
  • {b,c}, {a}
  • {a}, {b}, {c}

Partitions and equivalence relations give the same data: the equivalence classes of an equivalence relation on a set X form a partition of the set X, and a partition gives rise to an equivalence relation where two elements are equivalent if they are in the same part from .

The number of partitions of a finite set of size n into k parts is given by a Stirling number of the second kind;

Bell numbers

The total number of partitions of a set of size n is given by the n-th Bell number, denoted Bn. These may be obtained by the recurrence relation

They have an exponential generating function

Asymptotically,

where W denotes the Lambert W function.

Partition (number theory)

A partition of an integer n is an expression of n as a sum of positive integers ("parts"), with the order of the terms in the sum being disregarded.

Hence the number 3 has 3 partitions:

  • 3
  • 2+1
  • 1+1+1

The number of partitions of n is given by the partition function p(n).

References