Gyrification: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Daniel Mietchen
(some rephrasing)
imported>Daniel Mietchen
(expanded)
Line 41: Line 41:
  | url = http://cercor.oxfordjournals.org/cgi/content/full/11/12/1101
  | url = http://cercor.oxfordjournals.org/cgi/content/full/11/12/1101
  | pmid = 11709481
  | pmid = 11709481
}}</ref><ref name=Neal2007>{{citation
| last1 = Neal | first1 = J.
| last2 = Takahashi | first2 = M.
| last3 = Silva | first3 = M.
| last4 = Tiao | first4 = G.
| last5 = Walsh | first5 = C.A.
| last6 = Sheen | first6 = V.L.
| year = 2007
| title = Insights into the gyrification of developing ferret brain by magnetic resonance imaging
| journal = Journal of Anatomy
| volume = 210
| issue = 1
| pages = 66–77
| doi = 10.1111/j.1469-7580.2006.00674.x
}}</ref>. In this process, [[gyrus|gyri]] (ridges) and [[sulcus|sulci]] (fissures) form on the outermost surface of the brain. The term ''gyrification'' is also sometimes used instead of the more common term ''[[foliation]]'' to describe the folding patterns of the [[cerebellum]], which is highly convoluted in other [[taxa]], too, e.g. in [[bird]]s<ref name=Iwaniuk2006>{{citation
}}</ref>. In this process, [[gyrus|gyri]] (ridges) and [[sulcus|sulci]] (fissures) form on the outermost surface of the brain. The term ''gyrification'' is also sometimes used instead of the more common term ''[[foliation]]'' to describe the folding patterns of the [[cerebellum]], which is highly convoluted in other [[taxa]], too, e.g. in [[bird]]s<ref name=Iwaniuk2006>{{citation
  | author = Iwaniuk, A.N.; Hurd, P.L.; Wylie, D.R.
  | author = Iwaniuk, A.N.; Hurd, P.L.; Wylie, D.R.
Line 53: Line 67:
}}</ref>.  
}}</ref>.  


==Developmental biomechanics==
While the extent of cortical folding has been found to be partly determined by genetic factors<ref name=Bartley>{{cite journal
While the extent of cortical folding has been found to be partly determined by genetic factors<ref name=Bartley>{{cite journal
  | author = Bartley, A.J.
  | author = Bartley, A.J.
Line 74: Line 89:
  | url = http://www.sciencemag.org/cgi/content/abstract/297/5580/365
  | url = http://www.sciencemag.org/cgi/content/abstract/297/5580/365
  | pmid = 12130776
  | pmid = 12130776
}}</ref>, the underlying [[biomechanical]] mechanisms are not yet well understood. The overall folding pattern, however, can be mechanistically explained in terms of the cerebral cortex resembling a [[gel]] that buckles under the influence of non-[[isotropic]] [[force]]s<ref name=Van1997>{{cite journal
}}</ref><ref name=Kippenhan2005>{{citation
| last1 = Kippenhan | first1 = J. Shane
| last2 = Olsen | first2 = Rosanna K.
| last3 = Mervis | first3 = Carolyn B.
| last4 = Morris | first4 = Colleen A.
| last5 = Kohn | first5 = Philip
| last6 = Meyer-lindenberg | first6 = Andreas
| last7 = Berman | first7 = Karen Faith
| year = 2005
| title = Genetic Contributions to Human Gyrification: Sulcal Morphometry in Williams Syndrome
| journal = Journal of Neuroscience
| volume = 25
| issue = 34
| pages = 7840
| doi = 10.1523/JNEUROSCI.1722-05.2005
| url = http://www.neuroscience.org/cgi/reprint/25/34/7840
| pmid = 16120786
}}</ref><ref name=Kerjan2007>{{citation
| last1 = Kerjan | first1 = G.
| last2 = Gleeson | first2 = J.G.
| year = 2007
| title = Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly
| journal = Trends in Genetics
| volume = 23
| issue = 12
| pages = 623–630
| doi = 10.1016/j.tig.2007.09.003
| url = http://linkinghub.elsevier.com/retrieve/pii/S0168952507003289
}}</ref>, the underlying [[biomechanical]] mechanisms are not yet well understood. The overall folding pattern, however, can be mechanistically explained in terms of the cerebral cortex behaving as a gel that buckles under the influence of non-[[isotropic]] [[force]]s<ref name=Van1997>{{cite journal
  | author = Van Essen, D.C.
  | author = Van Essen, D.C.
  | year = 1997
  | year = 1997
Line 83: Line 126:
  | pages = 313-8
  | pages = 313-8
  | url = http://www.nature.com/nature/journal/v385/n6614/abs/385313a0.html  
  | url = http://www.nature.com/nature/journal/v385/n6614/abs/385313a0.html  
}}</ref><ref name=Hilgetag2005>{{citation
| last1 = Hilgetag | first1 = C.C.
| last2 = Barbas | first2 = H.
| year = 2005
| title = Developmental mechanics of the primate cerebral cortex
| journal = Anat Embryol (Berl)
| volume = 210
| issue = 5-6
| pages = 411–7
| doi = 10.1007/s00429-005-0041-5
| url = http://www.ncbi.nlm.nih.gov/pubmed/16175385
}}</ref><ref name=Mora2006>{{cite journal
}}</ref><ref name=Mora2006>{{cite journal
  | author = Mora, T.
  | author = Mora, T.
Line 93: Line 147:
  | pages = 119-124
  | pages = 119-124
  | url = http://www.springerlink.com/index/V446J5073H3417L0.pdf  
  | url = http://www.springerlink.com/index/V446J5073H3417L0.pdf  
}}</ref><ref name=Hilgetag2006>{{citation
| last1 = Hilgetag | first1 = C.C.
| last2 = Barbas | first2 = H.
| year = 2006
| title = Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex
| journal = PLoS Comput Biol
| volume = 2
| issue = 3
| pages = e22
| doi = 10.1371/journal.pcbi.0020022
}}</ref>.  
}}</ref>.  
Possible causes of the non-isotropy include [[thermal]] [[noise]], variations in the number and timing of [[cell division]]s, [[cell migration]], [[cortical connectivity]], [[synaptic pruning]], [[brain size]] and [[metabolism]] ([[phospholipid]]s in particular), all of which may interact<ref name=Price2004>{{cite journal
Possible causes of the non-isotropy include [[thermal]] [[noise]], variations in the number and timing of [[cell division]]s, [[cell migration]], [[cortical connectivity]], [[synaptic pruning]], [[brain size]] and [[metabolism]] ([[phospholipid]]s in particular), all of which may interact<ref name=Price2004>{{cite journal
Line 103: Line 167:
  | pages = 362-364
  | pages = 362-364
  | url = http://linkinghub.elsevier.com/retrieve/pii/S0166223604001304  
  | url = http://linkinghub.elsevier.com/retrieve/pii/S0166223604001304  
}}</ref><ref name=Francis2006>{{citation
| last1 = Francis | first1 = F.
| last2 = Meyer | first2 = G.
| last3 = Fallet-bianco | first3 = C.
| last4 = Moreno | first4 = S.
| last5 = Kappeler | first5 = C.
| last6 = Socorro | first6 = A.C.
| last7 = Tuy | first7 = F.P.D.
| last8 = Beldjord | first8 = C.
| last9 = Chelly | first9 = J.
| year = 2006
| title = Human disorders of cortical development: from past to present
| journal = European Journal of Neuroscience
| volume = 23
| issue = 4
| pages = 877–893
| doi = 10.1111/j.1460-9568.2006.04649.x
}}</ref><ref name=Xu2008>{{citation
| last1 = Xu | first1 = G.
| last2 = Bayly | first2 = P.V.
| last3 = Taber | first3 = L.A.
| year = 2008
| title = Residual stress in the adult mouse brain
| journal = Biomech Model Mechanobiol
| doi = 10.1007/s10237-008-0131-4
| url = http://www.ncbi.nlm.nih.gov/pubmed/18651186
}}</ref><ref name=Toro2008>{{cite journal
}}</ref><ref name=Toro2008>{{cite journal
  | author = Toro, R.
  | author = Toro, R.
Line 112: Line 202:
}}</ref>.  
}}</ref>.  


This multitude of underlying processes has rendered the concept of gyrification increasingly important for [[clinical diagnostics]] in recent years, since gyrification in some areas of the [[human brain]] appears to correlate with measures of [[intelligence (brain power)|intelligence]] <ref name= Luders2007>{{citation
==Medical relevance==
This multitude of underlying processes has rendered the concept of gyrification increasingly important for [[clinical diagnostics]] in recent years, since gyrification in some areas of the [[human brain]] appears to reflect functional development<ref name=Dubois2008>{{citation
| last1 = Dubois | first1 = J.
| last2 = Benders | first2 = M.
| last3 = Borradori-tolsa | first3 = C.
| last4 = Cachia | first4 = A.
| last5 = Lazeyras | first5 = F.
| last6 = Ha-vinh Leuchter | first6 = R.
| last7 = Sizonenko | first7 = S. V.
| last8 = Warfield | first8 = S. K.
| last9 = Mangin | first9 = J. F.
| last10 = Huppi | first10 = P. S.
| year = 2008
| title = Primary cortical folding in the human newborn: an early marker of later functional development
| journal = Brain
| volume = 131
| issue = 8
| pages = 2028
| doi = 10.1093/brain/awn137
| url = http://brain.oxfordjournals.org/cgi/content/abstract/awn137v1
| pmid = 18587151
}}</ref> and thus to correlate with measures of [[intelligence (brain power)|intelligence]]<ref name= Luders2007>{{citation
  | author = Lüders, Eileen; Narr, Katherine L.; Bilder, Robert M.; Szeszko, Philip R.; Gurbani, Mala N.; Hamilton, Liberty; Toga, Arthur W.; Gaser, Christian
  | author = Lüders, Eileen; Narr, Katherine L.; Bilder, Robert M.; Szeszko, Philip R.; Gurbani, Mala N.; Hamilton, Liberty; Toga, Arthur W.; Gaser, Christian
  | year = 2007
  | year = 2007
Line 122: Line 233:
  | doi = 10.1093/cercor/bhm227
  | doi = 10.1093/cercor/bhm227
  | pmid = 18089578
  | pmid = 18089578
}}</ref>, and disturbances in the folding pattern &mdash; as determined by non-invasive [[neuroimaging]] &mdash; can be taken as indicators of [[neuropsychiatric disease]]s. Patients with [[schizophrenia]] or [[Williams syndrome]], for example, can be readily distinguished from [[healthy control]] populations on the basis of gyrification measures<ref name=White2003>{{citation
}}</ref>, and disturbances in the folding pattern &mdash; as determined by non-invasive [[neuroimaging]] &mdash; can be taken as indicators of [[neuropsychiatric disease]]s if differences due to [[gender]] and [[age]] are accounted for <ref name=Luders2004>{{citation
| last1 = Lüders | first1 = E.
| last2 = Narr | first2 = K.L.
| last3 = Thompson | first3 = P.M.
| last4 = Rex | first4 = D.E.
| last5 = Jancke | first5 = L.
| last6 = Steinmetz | first6 = H.
| last7 = Toga | first7 = A.W.
| year = 2004
| title = Gender differences in cortical complexity
| journal = Nat Neurosci
| volume = 7
| issue = 8
| pages = 799–800
| doi = 10.1038/nn1277
| url = http://www.ncbi.nlm.nih.gov/pubmed/15338563
}}</ref>. Patients with [[schizophrenia]] or [[Williams syndrome]], for example, can be readily distinguished from [[healthy control]] populations on the basis of gyrification measures<ref name=White2003>{{citation
  | author = White, T.; Andreasen, N.C.; Nopoulos, P.; Magnotta, V.
  | author = White, T.; Andreasen, N.C.; Nopoulos, P.; Magnotta, V.
  | year = 2003
  | year = 2003
Line 144: Line 271:
}}</ref>.
}}</ref>.


==Measures of gyrification==
#Gyrification index
#Cortical complexity
#Global gyrification
#Local gyrification
#Curvature measures
== References==
== References==
{{reflist}}
{{reflist}}

Revision as of 06:49, 22 October 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
Addendum [?]
 
This editable Main Article is under development and subject to a disclaimer.

In brain anatomy, gyrification refers to the folding of the cerebral cortex during brain development in reptiles and mammals, e.g. in turtles, cetaceans and primates[1][2][3][4][5]. In this process, gyri (ridges) and sulci (fissures) form on the outermost surface of the brain. The term gyrification is also sometimes used instead of the more common term foliation to describe the folding patterns of the cerebellum, which is highly convoluted in other taxa, too, e.g. in birds[6].

Developmental biomechanics

While the extent of cortical folding has been found to be partly determined by genetic factors[7][8][9][10], the underlying biomechanical mechanisms are not yet well understood. The overall folding pattern, however, can be mechanistically explained in terms of the cerebral cortex behaving as a gel that buckles under the influence of non-isotropic forces[11][12][13][14]. Possible causes of the non-isotropy include thermal noise, variations in the number and timing of cell divisions, cell migration, cortical connectivity, synaptic pruning, brain size and metabolism (phospholipids in particular), all of which may interact[15][16][17][18].

Medical relevance

This multitude of underlying processes has rendered the concept of gyrification increasingly important for clinical diagnostics in recent years, since gyrification in some areas of the human brain appears to reflect functional development[19] and thus to correlate with measures of intelligence[20], and disturbances in the folding pattern — as determined by non-invasive neuroimaging — can be taken as indicators of neuropsychiatric diseases if differences due to gender and age are accounted for [21]. Patients with schizophrenia or Williams syndrome, for example, can be readily distinguished from healthy control populations on the basis of gyrification measures[22][23].

Measures of gyrification

  1. Gyrification index
  2. Cortical complexity
  3. Global gyrification
  4. Local gyrification
  5. Curvature measures

References

  1. Hofman, M.A. (1989). "On the evolution and geometry of the brain in mammals.". Prog Neurobiol 32 (2): 137-58. DOI:10.1016/0301-0082(89)90013-0. Research Blogging[e]
  2. Armstrong, E.; Schleicher, A.; Omran, H.; Curtis, M.; Zilles, K. (1995). "The Ontogeny of Human Gyrification". Cerebral Cortex 5 (1): 56-63.
  3. Mayhew, T.M.; Mwamengele, G.L.; Dantzer, V.; Williams, S. (1996). "The gyrification of mammalian cerebral cortex: quantitative evidence of anisomorphic surface expansion during phylogenetic and ontogenetic development.". Journal of Anatomy 188 (Pt 1): 53.
  4. Supèr, H.; Uylings, H.B.M. (2001), "The Early Differentiation of the Neocortex: a Hypothesis on Neocortical Evolution", Cerebral Cortex 11 (12): 1101–1109, DOI:10.1093/cercor/11.12.1101
  5. Neal, J.; M. Takahashi & M. Silva et al. (2007), "Insights into the gyrification of developing ferret brain by magnetic resonance imaging", Journal of Anatomy 210 (1): 66–77, DOI:10.1111/j.1469-7580.2006.00674.x
  6. Iwaniuk, A.N.; Hurd, P.L.; Wylie, D.R. (2006), "Comparative Morphology of the Avian Cerebellum: I. Degree of Foliation", Brain Behav Evol 68 (1): 45–62, DOI:10.1159/000093530
  7. Bartley, A.J.; Jones, D.W.; Weinberger, D.R.. "Genetic variability of human brain size and cortical gyral patterns". Brain 120 (2): 257-269.
  8. Chenn, Anjen; Walsh, Christopher A. (2002), "Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors", Science 297 (5580): 365–9, DOI:10.1126/science.1074192 [e]
  9. Kippenhan, J. Shane; Rosanna K. Olsen & Carolyn B. Mervis et al. (2005), "Genetic Contributions to Human Gyrification: Sulcal Morphometry in Williams Syndrome", Journal of Neuroscience 25 (34): 7840, DOI:10.1523/JNEUROSCI.1722-05.2005
  10. Kerjan, G. & J.G. Gleeson (2007), "Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly", Trends in Genetics 23 (12): 623–630, DOI:10.1016/j.tig.2007.09.003 [e]
  11. Van Essen, D.C. (1997). "A tension-based theory of morphogenesis and compact wiring in the central nervous system". Nature 385 (6614): 313-8.
  12. Hilgetag, C.C. & H. Barbas (2005), "Developmental mechanics of the primate cerebral cortex", Anat Embryol (Berl) 210 (5-6): 411–7, DOI:10.1007/s00429-005-0041-5
  13. Mora, T.; Boudaoud, A. (2006). "Buckling of swelling gels". The European Physical Journal E - Soft Matter 20 (2): 119-124.
  14. Hilgetag, C.C. & H. Barbas (2006), "Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex", PLoS Comput Biol 2 (3): e22, DOI:10.1371/journal.pcbi.0020022
  15. Price, D.J. (2004). "Lipids make smooth brains gyrate". Trends in Neurosciences 27 (7): 362-364.
  16. Francis, F.; G. Meyer & C. Fallet-bianco et al. (2006), "Human disorders of cortical development: from past to present", European Journal of Neuroscience 23 (4): 877–893, DOI:10.1111/j.1460-9568.2006.04649.x
  17. Xu, G.; P.V. Bayly & L.A. Taber (2008), "Residual stress in the adult mouse brain", Biomech Model Mechanobiol, DOI:10.1007/s10237-008-0131-4
  18. Toro, R.; Perron, M.; Pike, B.; Richer, L.; Veillette, S.; Pausova, Z.; Paus, T. (2008). "Brain Size and Folding of the Human Cerebral Cortex". Cerebral Cortex.
  19. Dubois, J.; M. Benders & C. Borradori-tolsa et al. (2008), "Primary cortical folding in the human newborn: an early marker of later functional development", Brain 131 (8): 2028, DOI:10.1093/brain/awn137 [e]
  20. Lüders, Eileen; Narr, Katherine L.; Bilder, Robert M.; Szeszko, Philip R.; Gurbani, Mala N.; Hamilton, Liberty; Toga, Arthur W.; Gaser, Christian (2007), "Mapping the Relationship between Cortical Convolution and Intelligence: Effects of Gender", Cerebral Cortex 18 (9): 2019, DOI:10.1093/cercor/bhm227
  21. Lüders, E.; K.L. Narr & P.M. Thompson et al. (2004), "Gender differences in cortical complexity", Nat Neurosci 7 (8): 799–800, DOI:10.1038/nn1277
  22. White, T.; Andreasen, N.C.; Nopoulos, P.; Magnotta, V. (2003), "Gyrification abnormalities in childhood- and adolescent-onset schizophrenia", Biological Psychiatry 54 (4): 418–426, DOI:10.1016/S0006-3223(03)00065-9
  23. Schmitt, J.E.; Watts, K.; Eliez, S.; Bellugi, U.; Galaburda, A.M.; Reiss, A.L. (2002). "Increased gyrification in Williams syndrome: evidence using 3D MRI methods". Developmental Medicine & Child Neurology 44 (5): 292-295. DOI:10.1111/j.1469-8749.2002.tb00813.x. Research Blogging.