Fluid flow past a cylinder: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Brian Fiedler
No edit summary
imported>Brian Fiedler
Line 35: Line 35:
On the surface of the cylinder, or <math>r=R</math>, pressure varies from a maximum of 1 (red color) at the stagnation points at <math>\theta=0</math> and
On the surface of the cylinder, or <math>r=R</math>, pressure varies from a maximum of 1 (red color) at the stagnation points at <math>\theta=0</math> and
<math>\theta=\pi</math> to a minimum of -3 (purple) in the limb of the cylinder at <math>\theta=\frac{1}{2}\pi</math> and <math>\theta=\frac{3}{2}\pi</math>. Likewise, <math>V</math> varies from V=0 at the stagnation points to <math>V=2U</math> on the sides, in the low pressure.
<math>\theta=\pi</math> to a minimum of -3 (purple) in the limb of the cylinder at <math>\theta=\frac{1}{2}\pi</math> and <math>\theta=\frac{3}{2}\pi</math>. Likewise, <math>V</math> varies from V=0 at the stagnation points to <math>V=2U</math> on the sides, in the low pressure.
=== stream function ===
The flow being incompressible, a [http://en.wikipedia.org/wiki/Stream_function  stream function] can be found such that
:<math>\vec{V}=\nabla\psi \times \widehat{k}</math>.  From the definition, <math>\vec{V}\cdot\nabla{\psi}=0</math> and contour of a constant value of <math>\psi</math> will also be a [http://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines  stream line], a line tangent to <math>\vec{V}</math>.  For the flow past a cylinder, we find:
:<math> \psi= U \left( r - \frac{R^2}{r} \right) \cos\theta </math>


==References==
==References==
<references />
<references />

Revision as of 21:53, 29 May 2009

"The flow of an incompressible fluid past a cylinder is one of the first mathematical models that a student of fluid dynamics encounters. This flow is an excellent vehicle for the study of concepts that will be encountered numerous times in mathematical physics, such as vector fields, coordinate transformations, and most important, the physical interpretation of mathematical results." [1]

Mathematical Solution

PD Image
Colors: pressure field. Red is high and blue is low. Velocity vectors.
PD Image
Close-up view of one quadrant of the flow. Colors: pressure field. Red is high and blue is low. Velocity vectors.
Pressure field (colors), streamfunction (black), velocity potential (white).

A cylinder (or disk) of radius is placed in two-dimensional, incompressible, inviscid flow. The goal is to find the steady velocity vector and pressure in a plane, subject to the condition that far from the cylinder the velocity vector is

and at the boundary of the cylinder

where is vector normal to the cylinder surface. The upstream flow is uniform and has no vorticity. The flow is inviscid, incompressible and has constant mass density . The flow therefore remains without vorticity, or is said to be irrotational, with everywhere. Being irrotational, there must exist a velocity potential :

Being incompressible, , so must satisify Laplace's equation:

The solution for is obtained most easily in polar coordinates <matth>r</math> and , related to conventional Cartesian coordinates by and . In polar coordinates, Laplace's equation is:

The solution that satisfies the boundary conditions is

The velocity components in polar coordinates are obtained from the components of in polar coordinates:

and

Being invisicid and irrotational, Bernoulli's equation allows the solution for pressure field to be obtained directly form the velocity field:

where the constants and appear to that far from the cylinder, where . Using ,

In the figures, the colorized field referred to as "pressure" is a plot of

On the surface of the cylinder, or , pressure varies from a maximum of 1 (red color) at the stagnation points at and to a minimum of -3 (purple) in the limb of the cylinder at and . Likewise, varies from V=0 at the stagnation points to on the sides, in the low pressure.

stream function

The flow being incompressible, a stream function can be found such that

. From the definition, and contour of a constant value of will also be a stream line, a line tangent to . For the flow past a cylinder, we find:

References