Complete metric space

From Citizendium
Revision as of 16:36, 1 November 2008 by imported>Richard Pinch (added section on completionl, examples)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, completeness is a property ascribed to a metric space in which every Cauchy sequence in that space is convergent. In other words, every Cauchy sequence in the metric space tends in the limit to a point which is again an element of that space. Hence the metric space is, in a sense, "complete."

Formal definition

Let X be a metric space with metric d. Then X is complete if for every Cauchy sequence there is an associated element such that .

Examples

  • The real numbers R, and more generally finite-dimensional Euclidean spaces, with the usual metric are complete.

Completion

Every metric space X has a completion which is a complete metric space in which X is isometrically embedded as a dense subspace. The completion has a universal property.

Examples

  • The real numbers R are the completion of the rational numbers Q with respect to the usual metric of absolute distance.

See also