Complete metric space: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Larry Sanger
m (Completeness moved to Completeness (mathematics): It's the name of a different property, in logic)
imported>Richard Pinch
m (new name in intro)
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
In [[mathematics]], '''completeness''' is a property ascribed to a [[metric space]] in which every [[Cauchy sequence]] in that space is ''convergent''. In other words, every Cauchy sequence in the metric space tends in the limit to a point which is again an element of that space. Hence the metric space is, in a sense, "complete."  
{{subpages}}
 
In [[mathematics]], a '''complete metric space''' is a [[metric space]] in which every [[Cauchy sequence]] in that space is ''convergent''. In other words, every Cauchy sequence in the metric space tends in the limit to a point which is again an element of that space. Hence the metric space is, in a sense, "complete."  


==Formal definition==
==Formal definition==
Let ''X'' be a metric space with metric ''d''. Then ''X'' is complete if for every Cauchy sequence <math>x_1,x_2,\ldots \in X</math> there is an associated element <math>x \in X</math> such that <math>\mathop{\lim}_{n \rightarrow \infty} d(x_n,x)=0</math>.
Let ''X'' be a metric space with metric ''d''. Then ''X'' is complete if for every Cauchy sequence <math>x_1,x_2,\ldots \in X</math> there is an associated element <math>x \in X</math> such that <math>\mathop{\lim}_{n \rightarrow \infty} d(x_n,x)=0</math>.


==See also==
==Examples==
[[Banach space]]
* The real numbers '''R''', and more generally finite-dimensional [[Euclidean space]]s, with the usual metric are complete.
* Any [[compact space|compact]] metric space is [[sequentially compact space|sequentially compact]] and hence complete.  The converse does not hold: for example, '''R''' is complete but not compact.
* In a space with the discrete metric, the only Cauchy sequences are those which are constant from some point on.  Hence any discrete metric space is complete.
* The rational numbers '''Q''' are ''not'' complete.  For example, the sequence (''x''<sub>''n''</sub>) defined by ''x''<sub>0</sub> = 1, ''x''<sub>''n''+1</sub> = 1 + 1/''x''<sub>''n''</sub> is Cauchy, but does not converge in '''Q'''.
 
==Completion==
Every metric space ''X'' has a '''completion''' <math>\bar X</math> which is a complete metric space in which ''X'' is [[isometry|isometrically]] embedded as a [[Denseness|dense]] subspace.  The completion has a universal property.
 
===Examples===
* The real numbers '''R''' are the completion of the rational numbers '''Q''' with respect to the usual metric of absolute distance.
 
==Topologically complete space==
Completeness is not a [[topological property]]: it is possible for a complete metric space to be [[homeomorphism|homeomorphic]] to a metric space which is not complete.  For example, the map
 
:<math> t \leftrightarrow \left(\frac{2t}{1+t^2},\frac{1-t^2}{1+t^2}\right) </math>
 
is a homeomorphism between the complete metric space '''R''' and the incomplete space which is the [[unit circle]] in the [[Euclidean plane]] with the point (0,-1) deleted.  The latter space is not complete as the non-Cauchy sequence corresponding to ''t''=''n'' as ''n'' runs through the [[positive integer]]s is mapped to a non-convergent Cauchy sequence on the circle. 


[[Hilbert space]]
We can define a [[topological space]] to be ''metrically topologically complete'' if it is homeomorphic to a complete metric space.  A topological condition for this property is that the space be [[metrizable space|metrizable]] and an ''absolute G<sub>δ</sub>'', that is, a [[G-delta set|G<sub>δ</sub>]] in every topological space in which it can be embedded.


[[Category:Mathematics_Workgroup]]
==See also==
[[Category:CZ Live]]
* [[Banach space]]
* [[Hilbert space]]

Latest revision as of 12:23, 4 January 2009

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a complete metric space is a metric space in which every Cauchy sequence in that space is convergent. In other words, every Cauchy sequence in the metric space tends in the limit to a point which is again an element of that space. Hence the metric space is, in a sense, "complete."

Formal definition

Let X be a metric space with metric d. Then X is complete if for every Cauchy sequence there is an associated element such that .

Examples

  • The real numbers R, and more generally finite-dimensional Euclidean spaces, with the usual metric are complete.
  • Any compact metric space is sequentially compact and hence complete. The converse does not hold: for example, R is complete but not compact.
  • In a space with the discrete metric, the only Cauchy sequences are those which are constant from some point on. Hence any discrete metric space is complete.
  • The rational numbers Q are not complete. For example, the sequence (xn) defined by x0 = 1, xn+1 = 1 + 1/xn is Cauchy, but does not converge in Q.

Completion

Every metric space X has a completion which is a complete metric space in which X is isometrically embedded as a dense subspace. The completion has a universal property.

Examples

  • The real numbers R are the completion of the rational numbers Q with respect to the usual metric of absolute distance.

Topologically complete space

Completeness is not a topological property: it is possible for a complete metric space to be homeomorphic to a metric space which is not complete. For example, the map

is a homeomorphism between the complete metric space R and the incomplete space which is the unit circle in the Euclidean plane with the point (0,-1) deleted. The latter space is not complete as the non-Cauchy sequence corresponding to t=n as n runs through the positive integers is mapped to a non-convergent Cauchy sequence on the circle.

We can define a topological space to be metrically topologically complete if it is homeomorphic to a complete metric space. A topological condition for this property is that the space be metrizable and an absolute Gδ, that is, a Gδ in every topological space in which it can be embedded.

See also