Caratheodory extension theorem

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In the branch of mathematics known as measure theory, the Caratheodory extension theorem states that a countably additive non-negative set function on an algebra of subsets of a set can be extended to be a measure on the sigma algebra generated by that algebra. Measure in this context specifically refers to a non-negative measure.

Statement of the theorem

(Caratheodory extension theorem) Let X be a set and be an algebra of subsets of X. Let be a countably additive non-negative set function on . Then there exists a measure on the -algebra (i.e., the smallest sigma algebra containing ) such that for all . Furthermore, if then the extension is unique.

is also referred to as the sigma algebra generated by . The term "algebra of subsets" in the theorem refers to a collection of subsets of a set X which contains X itself and is closed under the operation of taking complements, finite unions and finite intersections in X. That is, any algebra of subsets of X satisfies the following requirements:

  1. If then
  2. For any positive integer n, if then

The last two properties imply that is also closed under the operation of taking finite intersections of elements of .

References

  1. D. Williams, Probability with Martingales, Cambridge : Cambridge University Press, 1991.