Adenoviridae: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Idan Levi
No edit summary
imported>Idan Levi
No edit summary
Line 1: Line 1:
[[Image:Adenovirus2.jpg|thumb|300px|Adenoviridae]]
{{subpages}}
{{subpages}}
{{EZarticle-closed-auto‎}}
{{EZarticle-closed-auto‎}}


[[Image:Adenovirus2.jpg|thumb|300px|Adenoviridae]]
==Classification==
==Classification==



Revision as of 23:33, 31 March 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Attention niels epting.png
Attention niels epting.png
This article is currently being developed as part of an Eduzendium student project. If you are not involved with this project, please refrain from collaboratively developing it until this notice is removed.
Articles that lack this notice, including many Eduzendium ones, welcome your collaboration!


Adenoviridae

Classification

Higher order taxa

Family: Adenoviridae Genus: Mastadenovirus; Aviadenovirus; Atadenovirus; Siadenovirus

Species

Human adenovirus CAdenoviridae.jpg

Description and significance

Adenoviruses have the ability to infect various animals, including humans, canines and birds. More than 50 different serotypes which are

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.

Genome structure

The genome of adenoviridae consists of around 30-38 Kbp. It is linear and is made up of double stranded DNA, with no segmentation. The terminal end of the genome consists of a 55 kDa protein on every 5' end of it. The importance of this is that it enables sufficient replication of that part of the DNA. Furthermore, it is used as primers.

Cell structure and metabolism

The structure of an adenovirus is usually 90-100 nm in diameter. They are nonenveloped and icosahedral (contain 20 faces). The whole virus is made up of a core, which is where the dsDNA is found, fibers external to the capsid, a capsid, and proteins. The lenght of the fibers are around 9-77.5 nm and some contain glycoproteins. The surface of the capsid is made up of 252 capsomers. Twelve of the capsomers pentons and the other 240 are hexons. The core itself is made up of a nucleoprotein complex.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

Adenoviruses have two phases which allow it to cause disease. First - in the early phase - the virus attaches to the host cell using its fibers. This causes the host cell to take in the adenovirus through endocytosis. As the virus makes its way to the nucleus, the virus dissasembles to allow the DNA to be released. Transcription on the viral DNA begins when it is in the nucleus. Initially, the proteins that are produced are used to regulate the translation and transcription of the viral genome. They activate different genes of the virus. Moreover, the allow the virus to survive the immune system of the host. The late phase is started as assembly proteins are made. Genes are made to assemble new viruses. At the same time, translation of the hosts mRNA is stopped by blocking the movement of host mRNA - while the mRNA of the virus is allowed to freely move across the nucleus and into the cytoplasm to be translated. As more and more viruses are made, the host cell dies and releases them.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

| Citizendium