HUBO: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chunbum Park
mNo edit summary
imported>Chunbum Park
Line 29: Line 29:
Following the unveiling of Albert HUBO in November 2005, KAIST researchers proceeded to work on various technology demonstrators related to HUBO, including HUBO FX and HUBOWAY. HUBO FX  
Following the unveiling of Albert HUBO in November 2005, KAIST researchers proceeded to work on various technology demonstrators related to HUBO, including HUBO FX and HUBOWAY. HUBO FX  


The Jaemi HUBO's initial development concerning the mechanical aspect was done at KAIST from 2008 to 2009. The Jaemi HUBO was given a slimmer design with an aluminum endoskeleton and a polycarbonate frame, resulting in a slightly taller height but a 20% lighter weight than its predecessors. Its movements were more realistic since the arms made quicker and more natural motions, and the legs could stretch to imitate human walking, which is more efficient than the traditional humanoid walking by bending the legs to keep the height of the hips constant. With these improvements, Jaemi HUBO could walk at 1.4 km/h and also run at 3.6 km/h (which is still much slower than the new ASIMO's 6 km/h by comparison).<ref name="chosunjaemi">[http://news.chosun.com/site/data/html_dir/2009/06/08/2009060800669.html?srchCol=news&srchUrl=news1 KAIST 휴보 '미국 로봇 교과서'로 쓰인다], Chosun Ilbo. 2009-06-08.</ref><ref name="Jaemispecs">[http://hubolab.kaist.ac.kr/hubo%28khr-4%29.php Introduction of HUBO (KHR-4)], Hubo Lab. Date accessed: 2009-11-09.</ref><ref name="3.6">[http://pic.joins.com/article/photo/article.asp?total_id=3906441 시속 3.6㎞로 뛰는 로봇 세계 세 번째로 개발], ''JOINS''. 2009-12-05.</ref>
HUBO 2's initial development concerning the mechanical aspect was done at KAIST from 2008 to 2009. The HUBO 2 was given a slimmer design with an aluminum endoskeleton and a polycarbonate frame, resulting in a slightly taller height but a 20% lighter weight than its predecessors. Its movements were more realistic since the arms made quicker and more natural motions, and the legs could stretch to imitate human walking, which is more efficient than the traditional humanoid walking by bending the legs to keep the height of the hips constant. With these improvements, HUBO 2 could walk at 1.4 km/h and also run at 3.6 km/h (which is still much slower than the new ASIMO's 6 km/h by comparison).<ref name="chosunjaemi">[http://news.chosun.com/site/data/html_dir/2009/06/08/2009060800669.html?srchCol=news&srchUrl=news1 KAIST 휴보 '미국 로봇 교과서'로 쓰인다], Chosun Ilbo. 2009-06-08.</ref><ref name="Jaemispecs">[http://hubolab.kaist.ac.kr/hubo%28khr-4%29.php Introduction of HUBO (KHR-4)], Hubo Lab. Date accessed: 2009-11-09.</ref><ref name="3.6">[http://pic.joins.com/article/photo/article.asp?total_id=3906441 시속 3.6㎞로 뛰는 로봇 세계 세 번째로 개발], ''JOINS''. 2009-12-05.</ref>


The subsequent collaboration on the HUBO 2 (also known as KHR-4 and Jaemi HUBO &mdash; "Jaemi" (재미) can mean "in the United States" in [[Hanja|Chinese characters]] or "fun" in colloquial [[Korean]]) was a more extensive and strategic effort to combine Korea's expertise in humanoid design with the US's strength in cognition, perception, navigation, and networking. It involved participation of [[KAIST]], [[Korea University]], and the [[Seoul National University]] in South Korea, and the [[Bryn Mawr College]], [[Colby College]], [[Drexel University]], the [[University of Pennsylvania]], and [[Virginia Tech]] in the United States under a $5 million dollar, 5-year program funded by the [[National Science Foundation]].<ref name="Albertspecs"/><ref name="nsfcollaborate">[http://www.nsf.gov/news/news_summ.jsp?cntn_id=114909&org=OISE U.S. and Korean Researchers Unveil Newest Research Team Member: Jaemi the Humanoid], NSF. 2009-06-01.</ref>
The subsequent collaboration on the HUBO 2 (also known as KHR-4 and Jaemi HUBO &mdash; "Jaemi" (재미) can mean "in the United States" in [[Hanja|Chinese characters]] or "fun" in colloquial [[Korean]]) was a more extensive and strategic effort to combine Korea's expertise in humanoid design with the US's strength in cognition, perception, navigation, and networking. It involved participation of [[KAIST]], [[Korea University]], and the [[Seoul National University]] in South Korea, and the [[Bryn Mawr College]], [[Colby College]], [[Drexel University]], the [[University of Pennsylvania]], and [[Virginia Tech]] in the United States under a $5 million dollar, 5-year program funded by the [[National Science Foundation]].<ref name="Albertspecs"/><ref name="nsfcollaborate">[http://www.nsf.gov/news/news_summ.jsp?cntn_id=114909&org=OISE U.S. and Korean Researchers Unveil Newest Research Team Member: Jaemi the Humanoid], NSF. 2009-06-01.</ref>

Revision as of 16:55, 26 February 2011

The status or A editor fields in the metadata template are either incorrect or absent.
  • If the article has been approved please add the approving editor to the A editor field.
  • Otherwise, please change the status from 0"" to an appropriate value between 1 and 4 in the metadata template.

Please update the metadata template here
This article has a Citable Version.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
Gallery [?]
Video [?]
 
This editable Main Article has an approved citable version (see its Citable Version subpage). While we have done conscientious work, we cannot guarantee that this Main Article, or its citable version, is wholly free of mistakes. By helping to improve this editable Main Article, you will help the process of generating a new, improved citable version.
(CC) Photo: Min Lee
Albert HUBO.

HUBO, short for "humanoid robot," refers to the humanoid robots and the related technology demonstrators developed at the humanoid robotics lab (hubo lab) at KAIST. As with other humanoid projects, the main focus of HUBO's development has been on bipedal locomotion, such as walking, running, and traversing the stairs, which is essential for testing and implementing theories on human-robot interaction and artification intellience. HUBO was officially unveiled to the public on January 6, 2005, after four years of research with three earlier prototypes. focused on bipedal locomotion Its younger siblings are Albert HUBO and HUBO 2.[1][2]

Development history

The first HUBO (KHR-3) was developed by mechanical engineering professor Oh Junho and his Ph.D. student teams over the course of about 20 years. During much of this time, the technologies relevant to HUBO were acquired at a steady pace with contributions from within KAIST. This informal approach resulted in a very low development cost of around $500,000 by the time of KHR3's completion. (In comparison, Honda is believed to have spent $300 million on ASIMO between 1986 and 2000.)[3][4]

Prototypes

The first prototype was the KHR-0 (KAIST Humanoid Robot), consisting of two legs without an upper body. It was built in 2001 with the purpose of investigating the specifications of the actuators (devices that receive electric signals and perform mechanical actions) and the optimal design parameters of the humanoid robot.[5][6]

The second prototype, the KHR-1, was completed by January 2002. The KHR-1 was humanoid in form, but without the head and hand components that are nonessential for walking. Its purpose was to demonstrate autonomous walking that involves real-time motion control through sensory feedback. (This involves constant adjustments that are absent in playback walking from an offline learning process and partially adjusted walking.) It could walk at speeds up to 0.8 km/h and change its direction.[5][7][8][6]

The project was continued with the development of KHR-2 from 2003 to 2004. The KHR-2 was built as a complete humanoid and featured improved sensoring with the addition of CCD cameras, inertia sensors, and tilt sensors.[9] It was used as a platform for simulating vision-guided dynamic walking, in which the robot maintains focus on a moving red light.

KHR-3 HUBO

(CC) Photo: Daniel M. Lofaro
HUBO 2's fingers.

Work on the KHR-3 HUBO was begun in September 2004. The internal components were covered with metallic grey plastic, and modifications were made to the joints and and the skeleton for greater stiffness and minimal mechanical uncertainty. The KHR-3's physical specifications, such as height, weight, and the number of DOFs (degrees of freedom), were similar to Honda's ASIMO, which served as the benchmark for the project. In terms of AI and movements, HUBO fell short of the "next-gen ASIMO," which was unveiled three months later. While HUBO could only walk at 1.25 km/h, the ASIMO was capable of walking at 2.5 km/h and running at 3 km/h as well. The ASIMO was also capable of walking up and down stairs, which was a temporary shortcoming for HUBO needing further development. The unnerved KAIST researchers noted, however, that HUBO could play rock-paper-scissors, which was impossible for ASIMO since its fingers could not move independently of each other.[10][11][12]

International collaboration

The HUBO project drew considerable attention from abroad when the KHR-3 HUBO was unveiled in January 2005. According to an interview with Professor Oh,[4]

When KHR-2 was announced, Japanese scholars were surprised. Those Honda figures involved with ASIMO mostly knew what was going on, so I have yet to hear a direct response from them since HUBO was announced. I've just gotten faxes and emails from abroad, mostly asking if they could buy it or rent it. I also got an email from a Microsoft official who said he'd like to meet since they would like to do robot-related research. I've gotten responses from Taiwan and the United States praising HUBO.

The subsequent efforts on HUBO's development were international in scope, the first of which involved the Hanson Robotics in the creation of the Albert HUBO. Albert HUBO was a derived version of the KHR-3 HUBO, but with a distinctive head resembling Albert Einstein. The head, which was made by the Hanson Lab, featured a Frubber skin (often used in movie productions) and 35 joints underneath it to make realistic facial expressions. Like its predecessors, Albert HUBO contained 2 CCD cameras for vision recognition.[2]

Following the unveiling of Albert HUBO in November 2005, KAIST researchers proceeded to work on various technology demonstrators related to HUBO, including HUBO FX and HUBOWAY. HUBO FX

HUBO 2's initial development concerning the mechanical aspect was done at KAIST from 2008 to 2009. The HUBO 2 was given a slimmer design with an aluminum endoskeleton and a polycarbonate frame, resulting in a slightly taller height but a 20% lighter weight than its predecessors. Its movements were more realistic since the arms made quicker and more natural motions, and the legs could stretch to imitate human walking, which is more efficient than the traditional humanoid walking by bending the legs to keep the height of the hips constant. With these improvements, HUBO 2 could walk at 1.4 km/h and also run at 3.6 km/h (which is still much slower than the new ASIMO's 6 km/h by comparison).[13][14][15]

The subsequent collaboration on the HUBO 2 (also known as KHR-4 and Jaemi HUBO — "Jaemi" (재미) can mean "in the United States" in Chinese characters or "fun" in colloquial Korean) was a more extensive and strategic effort to combine Korea's expertise in humanoid design with the US's strength in cognition, perception, navigation, and networking. It involved participation of KAIST, Korea University, and the Seoul National University in South Korea, and the Bryn Mawr College, Colby College, Drexel University, the University of Pennsylvania, and Virginia Tech in the United States under a $5 million dollar, 5-year program funded by the National Science Foundation.[2][16]

Design and engineering principles

Central to HUBO's successful development was its focus on simpler and feasible design and movements. For HUBO to be light and efficient, its height was set similar to a child's, and the body was made with special materials (HUBO 2). Its autonomous design lacking external connections helps to both simulate realistic walking and reduce its exposure to outside factors that would increase its chances of error.[8][5]

(GNU) Image: Laurens van Lieshout
Harmonic drive.

All models were built with harmonic drives in order to avoid backlash in the gears and to achieve a light, compact design. The DOFs of the different axes in the joints of shoulders, waist, hips, and ankles were merged into intersections in order to attain a simple, closed-form solution (that is, comprised of well-known mathematical functions) of inverse kinematics (the computation of the robot's movements), when possible.[6][5]

HUBO's walking from KHR-1 to KHR-3 and Albert HUBO involved bending of legs characteristic of walking by a human stalker. The benefits of this type of walking include lowered center of gravity for greater stability and simpler inverse kinematics of movements fixed on Zero Moment Points. The ZMP trajectory consists of points on the ground where the total moment of inertia of the active forces equals to zero when one leg is in contact. The trajectory is calculated with a simple model to form a repetitive pattern, in which the robot is always in touch with the ground, and the initial and end phases of its legs' movements are identical.[17]

HUBO 2, on the other hand, is able to walk like a human, which is faster than curved walking because it reduces unnecessary movement and relieves burden on the knee components. Straight walking was first demonstrated by Yu Ogura on WABIAN-2 with the addition of an extra DOF at the waist that caused it to sway to a certain degree. Unlike the Wabian-2, Jaemi HUBO clings to a natural set of DOFs and instead relies on a system of posture control consisting of body-balancing and vibration-reduction units.[17]

Biped walking speed is naturally restricted, however, due to the limited range of the hip joint (which makes the forward movement of the leg). HUBO 2 can move more quickly by running, which includes a flying phase when both its feet are off the ground. Running is not as structurally limited as walking because the robot continues to move forward midair even as its hip joint reverses motion. By rotating its upper body against the one-sided thrusting motion of its legs, the robot is able to maintain a periodic running pattern based on a trajectory of the angular momentum of its center of mass.[18]

Notes

  1. Birth of Korean Humanoid Robot Marks Brilliance Advance in Korea Robotics, Chosun Ilbo. 2004-12-22.
  2. Jump up to: 2.0 2.1 2.2 Specification of Albert HUBO, Hubo Lab. Date accessed: 2009-02-24.
  3. 한국형 휴먼로봇 '휴보' 탄생, Chosun Ilbo. 2004-12-22.
  4. Jump up to: 4.0 4.1 Korean Robotics Steps Into the Future, Lee Sung Kyu and Todd Thacker, OhmyNews International. 2005-01-18.
  5. Jump up to: 5.0 5.1 5.2 5.3 Oh, et al, "Design and Walking Control of the Humanoid Robot, KHR-2(KAIST Humanoid Robot - 2)," 2004.
  6. Jump up to: 6.0 6.1 6.2 Oh, et al, "Mechanical Design of the Humanoid Robot Platform, HUBO," 2007.
  7. Introduction of KHR-1, Hubo Lab. Date accessed: 2009-02-20.
  8. Jump up to: 8.0 8.1 Oh, et al, "Development of a Humanoid Biped Walking Robot Platform KHR-1 - Initial Design and Its Performance Evaluation," 2002.
  9. Introduction of KHR-2, Hubo Lab. Date accessed: 2009-03-09.
  10. Specification of KHR-3 (HUBO), Hubo Lab. Date accessed: 2009-02-24.
  11. Honda Reveals Technologies Next-Generation ASIMO, Honda. 2004-12-15.
  12. Korea to unveil stair-walking robots, Korea.net. 2006-02-25.
  13. KAIST 휴보 '미국 로봇 교과서'로 쓰인다, Chosun Ilbo. 2009-06-08.
  14. Introduction of HUBO (KHR-4), Hubo Lab. Date accessed: 2009-11-09.
  15. 시속 3.6㎞로 뛰는 로봇 세계 세 번째로 개발, JOINS. 2009-12-05.
  16. U.S. and Korean Researchers Unveil Newest Research Team Member: Jaemi the Humanoid, NSF. 2009-06-01.
  17. Jump up to: 17.0 17.1 Oh et al, Realization of Stretch-legged Walking, 2008. pp. 118
  18. Cho and Oh, 2009. pp. 7