NOTICE: Citizendium is still being set up on its newer server, treat as a beta for now; please see here for more.
Citizendium - a community developing a quality comprehensive compendium of knowledge, online and free. Click here to join and contribute—free
CZ thanks our previous donors. Donate here. Treasurer's Financial Report -- Thanks to our content contributors. --

Poisson's ratio

From Citizendium
Jump to: navigation, search
This article is a stub and thus not approved.
Main Article
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
This editable Main Article is under development and not meant to be cited; by editing it you can help to improve it towards a future approved, citable version. These unapproved articles are subject to a disclaimer.

In material science, Poisson's ratio is the ratio of two dimensionless numbers: the transverse to longitudinal strain.

When a metal bar under tension is elongated, its width is slightly diminished. This lateral shrinkage constitutes a transverse strain that can be expressed as the change in the width divided by the original width (hence strain is dimensionless). Similarly, the longitudinal strain is the change in length divided by the original length of the metal bar under lengthwise tension or compression. The ratio of the two strains is Poisson's ratio. This ratio is named for the French mathematician Siméon-Denis Poisson.