# Ordered field

Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
Citable Version  [?]

This editable Main Article is under development and subject to a disclaimer.

In mathematics, an ordered field is a field which has a linear order structure which is compatible with the field operations.

Formally, F is an ordered field if there is a linear order ≤ on F which satisfies

• 
• If  then 
• For each element  or ;
• If  and  then 

Alternatively, the order may be defined in terms of a positive cone, a subset C of F which is closed under addition and multiplication, contains the 0 and 1 elements, and which has the properties that

• 
• 

The relationship between the order and the associated positive cone is that



It is possible for a field to have more than one linear order compatible with the field operations, but in any case the squares must lie in the positive cone.

## Artin-Schreier theorem

A field F is formally real if -1 is not a sum of squares in F. The Artin-Schreier theorem states that a field F can be ordered if and only if it is formally real.

## Examples

• The rational numbers form an ordered field in a unique way.
• The real numbers form an ordered field in a unique way: the squares form the positive cone.
• The complex numbers cannot be given an ordered field structure since both 1 and -1 are squares.
• The quadratic field  has two possible structures as ordered field, corresponding to the embeddings into R in which  takes on the two possible real values.
• No finite field can be ordered.