# Laplace expansion (potential)

Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
Citable Version  [?]

This editable Main Article is under development and subject to a disclaimer.

In physics, the Laplace expansion of a 1/r - type potential is applied to expand Newton's gravitational potential or Coulomb's electrostatic potential. In quantum mechanical calculations on atoms the expansion is used in the evaluation of integrals of the interelectronic repulsion.

## The expansion

The Laplace expansion is in fact the expansion of the inverse distance between two points. Let the points have position vectors r and r', then the Laplace expansion is

${\displaystyle {\frac {1}{|\mathbf {r} -\mathbf {r} '|}}=\sum _{\ell =0}^{\infty }{\frac {4\pi }{2\ell +1}}\sum _{m=-\ell }^{\ell }(-1)^{m}{\frac {r_{\scriptscriptstyle <}^{\ell }}{r_{\scriptscriptstyle >}^{\ell +1}}}Y_{\ell }^{-m}(\theta ,\varphi )Y_{\ell }^{m}(\theta ',\varphi ').}$

Here r has the spherical polar coordinates (r, θ, φ) and r' has ( r', θ', φ'). Further r< is min(r, r') and r> is max(r, r'). The function ${\displaystyle Y_{\ell }^{m}}$ is a normalized spherical harmonic function. The expansion takes a simpler form when written in terms of solid harmonics,

${\displaystyle {\frac {1}{|\mathbf {r} -\mathbf {r} '|}}=\sum _{\ell =0}^{\infty }\sum _{m=-\ell }^{\ell }(-1)^{m}I_{\ell }^{-m}(\mathbf {r} )R_{\ell }^{m}(\mathbf {r} ')\quad {\hbox{with}}\quad |\mathbf {r} |>|\mathbf {r} '|,}$

where ${\displaystyle R_{\ell }^{m}}$ is a regular solid harmonic:

${\displaystyle R_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;r^{\ell }Y_{\ell }^{m}(\theta ,\varphi ),}$

and ${\displaystyle I_{\ell }^{m}}$ is an irregular solid harmonic:

${\displaystyle I_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;{\frac {Y_{\ell }^{m}(\theta ,\varphi )}{r^{\ell +1}}}.}$

## Derivation

The derivation of this expansion is simple. One writes

${\displaystyle {\frac {1}{|\mathbf {r} -\mathbf {r} '|}}={\frac {1}{\sqrt {r^{2}+(r')^{2}-2rr'\cos \gamma }}}={\frac {1}{r_{\scriptscriptstyle >}{\sqrt {1+h^{2}-2h\cos \gamma }}}}\quad {\hbox{with}}\quad h\equiv {\frac {r_{\scriptscriptstyle <}}{r_{\scriptscriptstyle >}}}.}$

We find here the generating function of the Legendre polynomials ${\displaystyle P_{\ell }(\cos \gamma )}$ :

${\displaystyle {\frac {1}{\sqrt {1+h^{2}-2h\cos \gamma }}}=\sum _{\ell =0}^{\infty }h^{\ell }P_{\ell }(\cos \gamma ).}$

Use of the spherical harmonic addition theorem

${\displaystyle P_{\ell }(\cos \gamma )={\frac {4\pi }{2\ell +1}}\sum _{m=-\ell }^{\ell }(-1)^{m}Y_{\ell }^{-m}(\theta ,\varphi )Y_{\ell }^{m}(\theta ',\varphi ')}$

gives the desired result.