Gaussian units

From Citizendium
Revision as of 12:01, 20 August 2024 by Suggestion Bot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In physics, in particular in electromagnetic theory, Gaussian units are a set of units for electric and magnetic quantities. The units are named for the German mathematician and physicist Carl Friedrich Gauss, who was the first to define magnetic units.

The most common and most elaborate set of units are the SI units (formerly known as metric or MKSA units). Their main advantage is that they are very widespread and well defined by international committees for all different engineering and science disciplines. The entire engineering world uses SI units, so almost any discussion of electrical equipment or experimental apparatus is in terms of SI units. Meters that measure electrical quantities in SI units (e.g., volts, amps, and ohms) are readily available, but this is not the case for taking measurements in Gaussian units.

The main advantage of Gaussian units is that they simplify, more than the SI units do, the fundamental physical issues and theoretical relations involving electromagnetic phenomena. Especially, the theories of relativity and electrodynamics are simpler, more transparent and more elegant in Gaussian units than in SI units. In addition, the various formulas of electromagnetism are easier to remember in Gaussian units than in SI units. Because they are superior for fundamental physical questions, it is unlikely that Gaussian units will ever be completely abandoned.

The Gaussian system is based on cgs (centimeter-gram-second) units. The base mechanical units (length, mass, time) and some of the derived mechanical units (force, work, etc.) are given in Table 1.

In contrast to the SI units, the Gaussian units are unrationalized. This means that the factor 4π arises in the Maxwell equations, and is missing in other places, such as in Coulomb's law and the Biot-Savart law. In general, unrationalized systems of units give simpler formulas when we are dealing with problems of spherical symmetry, while the rationalized units give simpler formulas in problems with rectangular symmetry.

The Gaussian system is a mixed system, which means that it takes the unit of charge (the statC) from the esu system (electrostatic system of units), and the unit of magnetic flux (the maxwell) from the emu system (electromagnetic system of units). (The maxwell is a derived unit in the emu system; the abampere is an emu base unit). The electric units that the Gaussian system shares with the esu system are given in Table 2 and the magnetic units shared by the Gaussian system with the emu system in Table 3.

The Gaussian system does not know about the electric constant ε0 or the magnetic constant μ0, which are related to the speed of light c by

These constants do not represent physical properties of the vacuum but are artifacts of the SI system. Instead, the Gaussian system uses c.

In Gaussian units the electric field E, the polarization P, the electric displacement D, the magnetic induction B, the magnetization M and the magnetic field H have the same dimensions, while in SI units the dimensions are all different. In addition, the scalar and vector potentials φ and A have the same dimensions in Gaussian units, but not in SI units. The uniform dimensions for fields in Gaussian units make it easy to remember formulas in that system, and it makes fundamental physical relations more transparent.

Conversion tables

Table 1:  Mechanical units


Symbol Property SI Unit Factor cgs

l Length meter (m) 100 centimeter(cm)
m Mass kilogram (kg) 1000 gram (g)
t Time second (s) 1 second (s)
a Acceleration m/s2 100 galileo (Gal)
F Force newton (N) 105 dyne (dyn)
W Energy joule (J) 107 erg (erg)
P Power watt (W) 107 erg/s

Example: 1 J = 107 erg




Table 2:  Electric units


Symbol Property SI Unit Factor Gaussian

I Electric current ampere (A) 10c statampere (statA)
Q Charge coulomb (C) 10c statcoulomb (statC)
V Electric potential volt (V) 106/c statvolt (statV)
R Resistance ohm (Ω) 105/c2 statohm (statΩ)
G Conductance siemens (S) 10−5c2 statsiemens (statS)
L Self-inductance henry (H) 105/c2 abhenry (abH)
C Capacitance farad (F) 10−5c2 cm
E Electric field V/m 104/c statV/cm
ρ Electric charge density C/m3 c/105 statC/cm3
D Electric displacement C/m2 4π10-3c statV/cm

c is the speed of light in m/s (≈ 3⋅108 m/s).
Example: 1 A = 10c statA.



Table 3:  Magnetic units


SymbolProperty Gaussian → SI

Φ magnetic flux 1 Mx → 10−8 Wb = 10−8 V⋅s
B magnetic flux density 1 G → 10−4 T = 10−4 Wb/m2
magnetic induction
H magnetic field 1 Oe → 103/(4π) A/m
m magnetic moment 1 erg/G = 1 emu → 10−3 A⋅m2 = 10−3 J/T
M magnetization 1 erg/(G⋅cm3) = 1 emu/cm3 → 103 A/m
M magnetization 1 G → 103/(4π) A/m
σ mass magnetization 1 erg/(G⋅g) = 1 emu/g → 1 A⋅m2/kg
specific magnetization
j magnetic dipole moment 1 erg/G = 1 emu → 4π ⋅ 10−10 Wb⋅m
J magnetic polarization 1 erg/(G⋅cm3) = 1 emu/cm3 → 4π ⋅ 10−4 T
χ, κ susceptibility 1 → 4π
χρ mass susceptibility 1 cm3/g → 4π ⋅ 10−3 m3/kg
μ permeability 1 → 4π ⋅ 10−7 H/m = 4π ⋅ 10−7 Wb/(A⋅m)
μr relative permeability μ → μr
w, W energy density 1 erg/cm3 → 10−1 J/m3
N, D demagnetizing factor 1 → 1/(4π)

Mx = maxwell, G = gauss, Oe = oersted ; Wb = weber, V = volt, s = second, T = tesla, m = meter, A = ampere, J = joule, kg = kilogram, H = henry