Hermite polynomial
Jump to navigation
Jump to search
In mathematics and physics, Hermite polynomials form a well-known class of orthogonal polynomials. In quantum mechanics they appear as eigenfunctions of the harmonic oscillator and in numerical analysis they play a role in Gauss-Hermite quadrature. The functions are named after the French mathematician Charles Hermite (1822–1901).
The Hermite polynomials Hn(x) are orthogonal in the sense of the following inner product:
That is, the polynomials are defined on the full real axis and have weight w(x) = exp(−x²). Their orthogonality is expressed by the appearance of the Kronecker delta δn'n. The normalization constant is given by