Cytochrome P-450

From Citizendium
Revision as of 10:44, 8 July 2009 by imported>Robert Badgett (→‎Common abnormal alleles)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Cytochrome P-450 is a "superfamily of hundreds of closely related hemeproteins found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (mixed function oxygenases). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (biotransformation). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism."[1]

Common abnormal alleles

Isoforms CYP2C9, CYP2C19, and CYP2D6 account for 40% of metabolism by Cytochrome P-450.[2]

CYP1A2

CYP1A2 is an isoenzyme of cytochrome P-450.[3] Slow metabolism may explain the association between caffeine and myocardial infarction.[4]

CYP2C9

CYP2C9 is an isoenzyme of cytochrome P-450.[5]2-6% of anglos are poor metabolizers of drugs that use the CYP2D6 isoenzyme.[6][7][8]

Polymorphisms of CYP2C9 explain 10% of variation in warfarin dosing[9], mainly among Caucasian patients as these variants are rare in African American and most Asian populations.[10] A meta-analysis of mainly Caucasian patients found[10]:

  • CYP2C9*2 allele:
    • present in 12.2% of patients
    • mean reduction was in warfarin dose was 0.85 mg (17% reduction)
    • relative bleeding risk was 1.91
  • CYP2C9*3 allele:
    • present in 7.9% of patients
    • mean reduction was in warfarin dose was 1.92 mg (37% reduction)
    • relative bleeding risk was 1.77

CYP2C19

CYP2C19 is an isoenzyme of cytochrome P-450.[11] 2-6% of anglos and 15-25% of asians are poor metabolizers of drugs that use the CYP2D6 isoenzyme.[12][7][8] More recently, a study suggests that 30% of patients may have a reduced-function allele.[13]

CYP2C19 polymorphism affects response to clopidogrel. 30% of patients may have a reduced-function allele.[13]

CYP2D6

3-10% of anglos and < 2% of asians and africans are poor metabolizers of drugs that use the CYP2D6 isoenzyme.[14][7][8]

Poor metabolism affects many antidepressants, metoprolol and other drugs that use this isoenzyme. More information is available at Entrez Gene.[15]

CYP3A

CYP3A is an isoenzyme of cytochrome P-450.[16] Simulataneous use of erythromycin and inhibitors of CYP3A may be associated with sudden cardiac death.[17]

References

  1. Anonymous (2025), Cytochrome P-450 (English). Medical Subject Headings. U.S. National Library of Medicine.
  2. Caraco Y (December 2004). "Genes and the response to drugs". N. Engl. J. Med. 351 (27): 2867–9. DOI:10.1056/NEJMe048278. PMID 15625340. Research Blogging.
  3. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 124060. World Wide Web URL: http://omim.org/.
  4. Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H (March 2006). "Coffee, CYP1A2 genotype, and risk of myocardial infarction". JAMA 295 (10): 1135–41. DOI:10.1001/jama.295.10.1135. PMID 16522833. Research Blogging.
  5. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 601130. World Wide Web URL: http://omim.org/.
  6. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 124030. World Wide Web URL: http://omim.org/.
  7. 7.0 7.1 7.2 Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W (November 2001). "Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review". JAMA 286 (18): 2270–9. PMID 11710893[e]
  8. 8.0 8.1 8.2 Weinshilboum R (February 2003). "Inheritance and drug response". N. Engl. J. Med. 348 (6): 529–37. DOI:10.1056/NEJMra020021. PMID 12571261. Research Blogging.
  9. Wadelius M, Chen LY, Downes K, et al (2005). "Common VKORC1 and GGCX polymorphisms associated with warfarin dose". Pharmacogenomics J. 5 (4): 262-70. DOI:10.1038/sj.tpj.6500313. PMID 15883587. Research Blogging.
  10. 10.0 10.1 Sanderson S, Emery J, Higgins J (2005). "CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis". Genet. Med. 7 (2): 97-104. PMID 15714076[e]
  11. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 124020. World Wide Web URL: http://omim.org/.
  12. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 124030. World Wide Web URL: http://omim.org/.
  13. 13.0 13.1 Mega JL, Close SL, Wiviott SD, et al (December 2008). "Cytochrome P-450 Polymorphisms and Response to Clopidogrel". N. Engl. J. Med.. DOI:10.1056/NEJMoa0809171. PMID 19106084. Research Blogging.
  14. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 124030. World Wide Web URL: http://omim.org/.
  15. Anonymous. Entrez Gene: CYP2D6 cytochrome P450, family 2, subfamily D, polypeptide 6 [ Homo sapiens ]. National Library of Medicine. Retrieved on 2009-01-03.
  16. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 124010. World Wide Web URL: http://omim.org/.
  17. Ray WA, Murray KT, Meredith S, Narasimhulu SS, Hall K, Stein CM (September 2004). "Oral erythromycin and the risk of sudden death from cardiac causes". N. Engl. J. Med. 351 (11): 1089–96. DOI:10.1056/NEJMoa040582. PMID 15356306. Research Blogging.

External links