Revision as of 07:45, 30 January 2009 by imported>Paul Wormer
Template:TOC-right
In mathematics and physics, Hermite polynomials form a well-known class of orthogonal polynomials. In quantum mechanics they appear as eigenfunctions of the harmonic oscillator and in numerical analysis they play a role in Gauss-Hermite quadrature. The functions are named after the French mathematician Charles Hermite (1822–1901).
- See Catalogs for a table of Hermite polynomials through n = 12.
Orthonormality
The Hermite polynomials Hn(x) are orthogonal in the sense of the following inner product:
![{\displaystyle \left(H_{n'},H_{n}\right)\equiv \int _{-\infty }^{\infty }H_{n'}(x)H_{n}(x)\;e^{-x^{2}}\,\mathrm {d} x=\delta _{n'n}\,h_{n}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/77209d2047b93b92235badae16dc9e412e695d8c)
That is, the polynomials are defined on the full real axis and have weight w(x) = exp(−x²). Their orthogonality is expressed by the appearance of the Kronecker delta
δn'n. The normalization constant is given by
![{\displaystyle N_{n}\equiv {\sqrt {\frac {1}{h_{n}}}}=\left({\frac {1}{\pi }}\right)^{1/4}\,{\frac {1}{\sqrt {2^{n}\,n!}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dd105884a0be73b28c5a4937780e9be9d85675f5)
Normalization is to unity
![{\displaystyle N_{n}^{2}\;\int _{-\infty }^{\infty }H_{n}(x)H_{n}(x)\;e^{-x^{2}}\,\mathrm {d} x=1.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b95a599305a76a2eb180adc54d6c135fa29a24a)
The polynomials NnHn(x) are orthonormal, which means that they are orthogonal and normalized to unity.
Explicit expression
![{\displaystyle H_{n}(x)=n!\,\sum _{m=0}^{\lfloor N/2\rfloor }\;(-1)^{m}{\frac {1}{m!(n-2m)!}}\,(2x)^{n-2m}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a2ac407c0a4179017fee8eddd5abf37409066e6e)
here
if N even and
if N odd.
Recursion relation
Orthogonal polynomials can be constructed recursively by means of a Gram-Schmidt orthogonalization pocedure. This procedure yields the following relation
![{\displaystyle H_{n+1}(x)=2xH_{n}(x)-2nH_{n-1}(x)\;\quad {\hbox{with}}\quad H_{0}(x)=1.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/85231093b425fed4fe830ba01d8e8ba47ed5f038)
The first few follow immediately from this relation,
![{\displaystyle H_{1}=2x,\quad H_{2}=4x^{2}-2,\quad H_{3}=8x^{3}-12x,\quad \ldots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6edf97573d4e8494822182b05f4649a9b0ba42a)
Differential equation
The polynomials satisfy the Hermite differential equation for the special case that the coefficient of Hn(x) is equal to the even integer 2n,
![{\displaystyle {\frac {d^{2}H_{n}}{dx^{2}}}-2x\,{\frac {dH_{n}}{dx}}+2nH_{n}=0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d8a04b675934cf36624e17718ab337ed8d83ce)
Symmetry
![{\displaystyle H_{n}(-x)=(-1)^{n}H_{n}(x)\;,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3e598278514ba409cb7c2b9af245f8abce17d83d)
the functions of even n are symmetric under x → −x and those of odd n are antisymmetric under this substitution.
Rodrigues' formula
![{\displaystyle H_{n}(x)=(-1)^{n}\,e^{x^{2}}{\frac {d^{n}}{dx^{n}}}\,e^{-x^{2}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/739104ac23eb46bf229f00cea0caac959a35008b)
Generating function
![{\displaystyle e^{2xt}\,e^{-t^{2}}=\sum _{n=0}^{\infty }\;H_{n}(x)\;{\frac {t^{n}}{n!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8a718012c8476b07dca7830b57310efd4cb2b653)
First few terms
![{\displaystyle \left(1+2xt+{\frac {1}{2}}(2x)^{2}t^{2}+{\frac {1}{6}}(2x)^{3}t^{3}+\cdots \right)\left(1-t^{2}+\cdots \right)=1+2x\;t+(4x^{2}-2)\;{\frac {t^{2}}{2}}+(8x^{3}-12x)\;{\frac {t^{3}}{6}}+\cdots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/88574675b02ea372b3386a5114920f4066a9c557)
so that
![{\displaystyle H_{0}=1,\quad H_{1}(x)=2x,\quad H_{2}(x)=4x^{2}-2,\quad H_{3}(x)=8x^{3}-12x.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/20f17fe1f55e742718d2bb0fa32a98819ac74044)
Differential relation
![{\displaystyle {\frac {dH_{n}(x)}{dx}}=2nH_{n-1}(x).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1052437387508b127e8a413e7e163d4a00760f7d)
Sum formula
![{\displaystyle H_{n}(x+y)=\left({\frac {1}{\sqrt {2}}}\right)^{n}\sum _{k=0}^{n}{\binom {n}{k}}\;H_{k}({\sqrt {2}}\,x)\;H_{n-k}({\sqrt {2}}\,y),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8a3d1e962fb3d21a0d248b79f305523d66385bc2)
where
is a binomial coefficient.
References
M. Abramowitz and I.A. Stegun (Eds), Handbook of Mathematical Functions, Dover, New York (1972). Chapter 22
Abramowitz and Stegun online
Eric W. Weisstein, Hermite Polynomial