Electromagnetic spectrum

From Citizendium
Revision as of 12:45, 27 August 2008 by imported>Howard C. Berkowitz (spectrum management and technical monopoly)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The Electromagnetic Spectrum is the name given to the range of electromagnetic waves covering all frequencies and wavelengths. It includes radio and television transmission, Microwaves, Infrared, visible light, Ultraviolet, X-rays, and Gamma rays.

Electromagnetic radiation

All electromagnetic radiation can be described in terms of its Energy (E), frequency (f), wavenumber (v'), or wavelength (). These properties are all related by the following equations:

,
,

where c = 299,792,458 m/s (the speed of light) and h = 6.626 x 10-34 Js (Planck's constant)

As well as the wavelike properties of EM radiation several effects particularly of the emission and absorption of light behave like particles. That is, the energy carried by light waves is packaged in discrete bundles called photons or quanta. The particle character of light is described in quantum electrodynamics, a theory which began with Dirac's work of 1927.[1]

Electromagnetic spectrum as a resource

Espectially in radio and radar frequencies, the electromagnetic spectrum can be a scarce and valuable resource, since a given frequency in a given geographic area can often be used only for one purpose. This is a classic requisite of a technical monopoly. If a frequency is in use for commercial television, than it cannot be used for cellular telephony. In electronic warfare, there may be difficult tradeoffs between letting an enemy use a radio frequency for his own purposes while one's own side is gaining signals intelligence from it, or jamming to deny its use for command and control.

See electromagnetic spectrum management for the policy, management, and commercialization of parts of the spectrum.

Reference

  1. P.A.M. Dirac, Proc. Royal Society (London), The Quantum Theory of the Emission and Absorption of Radiation, vol. A114, p. 243 (1927)

Further reading