Solid harmonics: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
(My Wiki article)
 
imported>Paul Wormer
Line 43: Line 43:
</math>
</math>
where the [[Clebsch-Gordan coefficient]] is given by
where the [[Clebsch-Gordan coefficient]] is given by
:<math>
:<math>
\langle \lambda, \mu; \ell-\lambda, m-\mu| \ell m \rangle
\langle \lambda, \mu; \ell-\lambda, m-\mu| \ell m \rangle
Line 53: Line 54:
</math>
</math>
with <math> |r| \le |a|\,</math>. The quantity between pointed brackets is again a [[Clebsch-Gordan coefficient]],
with <math> |r| \le |a|\,</math>. The quantity between pointed brackets is again a [[Clebsch-Gordan coefficient]],
<!--
:<math>
:<math>
\langle \lambda, \mu; \ell+\lambda, m-\mu| \ell m \rangle
\langle \lambda, \mu; \ell+\lambda, m-\mu| \ell m \rangle
Line 58: Line 60:
\binom{2\ell+2\lambda+1}{2\lambda}^{-1/2}.
\binom{2\ell+2\lambda+1}{2\lambda}^{-1/2}.
</math>
</math>
 
-->
====References====
====References====
The addition theorems were  proved in different manners by many different workers. See for two different proofs for example:
The addition theorems were  proved in different manners by many different workers. See for two different proofs for example:

Revision as of 07:12, 18 August 2007

In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates. There are two kinds: the regular solid harmonics Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^m_\ell(\mathbf{r})} , which vanish at the origin and the irregular solid harmonics Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I^m_{\ell}(\mathbf{r})} , which are singular at the origin. Both sets of functions play an important role in potential theory.

Derivation, relation to spherical harmonics

Introducing r, θ, and φ for the spherical polar coordinates of the 3-vector r, we can write the Laplace equation in the following form

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2\Phi(\mathbf{r}) = \left(\frac{1}{r} \frac{\partial^2}{\partial r^2}r - \frac{L^2}{r^2}\right)\Phi(\mathbf{r}) = 0 , \qquad \mathbf{r} \ne \mathbf{0}, }

where L2 is the square of the orbital angular momentum,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{L} = -i\hbar\, (\mathbf{r} \times \mathbf{\nabla}) . }

It is known that spherical harmonics Yml are eigenfunctions of L2,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L^2 Y^m_{\ell}\equiv \left[ L^2_x +L^2_y+L^2_z\right]Y^m_{\ell} = \ell(\ell+1) Y^m_{\ell}. }

Substitution of Φ(r) = F(r) Yml into the Laplace equation gives, after dividing out the spherical harmonic function, the following radial equation and its general solution,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{r}\frac{\partial^2}{\partial r^2}r F(r) = \frac{\ell(\ell+1)}{r^2} F(r) \Longrightarrow F(r) = A r^\ell + B r^{-\ell-1}. }

The particular solutions of the total Laplace equation are regular solid harmonics:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^m_{\ell}(\mathbf{r}) \equiv \sqrt{\frac{4\pi}{2\ell+1}}\; r^\ell Y^m_{\ell}(\theta,\varphi), }

and irregular solid harmonics:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I^m_{\ell}(\mathbf{r}) \equiv \sqrt{\frac{4\pi}{2\ell+1}} \; \frac{ Y^m_{\ell}(\theta,\varphi)}{r^{\ell+1}} . }

Racah's normalization (also known as Schmidt's semi-normalization) is applied to both functions

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{\pi}\sin\theta\, d\theta \int_0^{2\pi} d\varphi\; R^m_{\ell}(\mathbf{r})^*\; R^m_{\ell}(\mathbf{r}) = \frac{4\pi}{2\ell+1} r^{2\ell} }

(and analogously for the irregular solid harmonic) instead of normalization to unity. This is convenient because in many applications the Racah normalization factor appears unchanged throughout the derivations.

Addition theorems

The translation of the regular solid harmonic gives a finite expansion,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^m_\ell(\mathbf{r}+\mathbf{a}) = \sum_{\lambda=0}^\ell\binom{2\ell}{2\lambda}^{1/2} \sum_{\mu=-\lambda}^\lambda R^\mu_{\lambda}(\mathbf{r}) R^{m-\mu}_{\ell-\lambda}(\mathbf{a})\; \langle \lambda, \mu; \ell-\lambda, m-\mu| \ell m \rangle, }

where the Clebsch-Gordan coefficient is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \lambda, \mu; \ell-\lambda, m-\mu| \ell m \rangle = \binom{\ell+m}{\lambda+\mu}^{1/2} \binom{\ell-m}{\lambda-\mu}^{1/2} \binom{2\ell}{2\lambda}^{-1/2}. }

The similar expansion for irregular solid harmonics gives an infinite series,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I^m_\ell(\mathbf{r}+\mathbf{a}) = \sum_{\lambda=0}^\infty\binom{2\ell+2\lambda+1}{2\lambda}^{1/2} \sum_{\mu=-\lambda}^\lambda R^\mu_{\lambda}(\mathbf{r}) I^{m-\mu}_{\ell+\lambda}(\mathbf{a})\; \langle \lambda, \mu; \ell+\lambda, m-\mu| \ell m \rangle }

with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r| \le |a|\,} . The quantity between pointed brackets is again a Clebsch-Gordan coefficient,

References

The addition theorems were proved in different manners by many different workers. See for two different proofs for example:

  • R. J. A. Tough and A. J. Stone, J. Phys. A: Math. Gen. Vol. 10, p. 1261 (1977)
  • M. J. Caola, J. Phys. A: Math. Gen. Vol. 11, p. L23 (1978)

Real form

By a simple linear combination of solid harmonics of ±m these functions are transformed into real functions. The real regular solid harmonics, expressed in cartesian coordinates, are homogeneous polynomials of order l in x, y, z. The explicit form of these polynomials is of some importance. They appear, for example, in the form of spherical atomic orbitals and real multipole moments. The explicit cartesian expression of the real regular harmonics will now be derived.

Linear combination

We write in agreement with the earlier definition

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_\ell^m(r,\theta,\varphi) = (-1)^{(m+|m|)/2}\; r^\ell \;\Theta_{\ell}^{|m|} (\cos\theta) e^{im\varphi}, \qquad -\ell \le m \le \ell, }

with

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Theta_{\ell}^m (\cos\theta) \equiv \left[\frac{(\ell-m)!}{(\ell+m)!}\right]^{1/2} \,\sin^m\theta\, \frac{d^m P_\ell(\cos\theta)}{d\cos^m\theta}, \qquad m\ge 0, }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_\ell(\cos\theta)} is a Legendre polynomial of order l. The m dependent phase is known as the Condon-Shortley phase.

The following expression defines the real regular solid harmonics:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} C_\ell^{m} \\ S_\ell^{m} \end{pmatrix} \equiv \sqrt{2} \; r^\ell \; \Theta^{m}_\ell \begin{pmatrix} \cos m\varphi\\ \sin m\varphi \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} (-1)^m & \quad 1 \\ -(-1)^m i & \quad i \end{pmatrix} \begin{pmatrix} R_\ell^{m} \\ R_\ell^{-m} \end{pmatrix}, \qquad m > 0. }

and for m = 0:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_\ell^{0} \equiv R_\ell^{0} . }

Since the transformation is by a unitary matrix the normalization of the real and the complex solid harmonics is the same.

z-dependent part

Upon writing u = cos θ the mth derivative of the Legendre polynomial can be written as the following expansion in u

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^m P_\ell(u)}{du^m} = \sum_{k=0}^{\left \lfloor (\ell-m)/2\right \rfloor} \gamma^{(m)}_{\ell k}\; u^{\ell-2k-m} }

with

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma^{(m)}_{\ell k} = (-1)^k 2^{-\ell} \binom{\ell}{k}\binom{2\ell-2k}{\ell} \frac{(\ell-2k)!}{(\ell-2k-m)!}. }

Since z = r cosθ it follows that this derivative, times an appropriate power of r, is a simple polynomial in z,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi^m_\ell(z)\equiv r^{\ell-m} \frac{d^m P_\ell(u)}{du^m} = \sum_{k=0}^{\left \lfloor (\ell-m)/2\right \rfloor} \gamma^{(m)}_{\ell k}\; r^{2k}\; z^{\ell-2k-m}. }

(x,y)-dependent part

Consider next, recalling that x = r sinθcosφ and y = r sinθsinφ,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^m \sin^m\theta \cos m\varphi = \frac{1}{2} \left[ (r \sin\theta e^{i\varphi})^m + (r \sin\theta e^{-i\varphi})^m \right] = \frac{1}{2} \left[ (x+iy)^m + (x-iy)^m \right] }

Likewise

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^m \sin^m\theta \sin m\varphi = \frac{1}{2i} \left[ (r \sin\theta e^{i\varphi})^m - (r \sin\theta e^{-i\varphi})^m \right] = \frac{1}{2i} \left[ (x+iy)^m - (x-iy)^m \right]. }

Further

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_m(x,y) \equiv \frac{1}{2} \left[ (x+iy)^m + (x-iy)^m \right]= \sum_{p=0}^m \binom{m}{p} x^p y^{m-p} \cos (m-p) \frac{\pi}{2} }

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_m(x,y) \equiv \frac{1}{2i} \left[ (x+iy)^m - (x-iy)^m \right]= \sum_{p=0}^m \binom{m}{p} x^p y^{m-p} \sin (m-p) \frac{\pi}{2}. }

In total

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C^m_\ell(x,y,z) = \left[\frac{(2-\delta_{m0}) (\ell-m)!}{(\ell+m)!}\right]^{1/2} \Pi^m_{\ell}(z)\;A_m(x,y),\qquad m=0,1, \ldots,\ell }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^m_\ell(x,y,z) = \left[\frac{2 (\ell-m)!}{(\ell+m)!}\right]^{1/2} \Pi^m_{\ell}(z)\;B_m(x,y) ,\qquad m=1,2,\ldots,\ell. }

List of lowest functions

We list explicitly the lowest functions up to and including l = 5 . Here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{\Pi}^m_\ell(z) \equiv \left[\frac{(2-\delta_{m0}) (\ell-m)!}{(\ell+m)!}\right]^{1/2} \Pi^m_{\ell}(z) . }


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix} \bar{\Pi}^0_0 & = 1 & \bar{\Pi}^1_3 & = \frac{1}{4}\sqrt{6}(5z^2-r^2) & \bar{\Pi}^4_4 & = \frac{1}{8}\sqrt{35} \\ \bar{\Pi}^0_1 & = z & \bar{\Pi}^2_3 & = \frac{1}{2}\sqrt{15}\; z & \bar{\Pi}^0_5 & = \frac{1}{8}z(63z^4-70z^2r^2+15r^4) \\ \bar{\Pi}^1_1 & = 1 & \bar{\Pi}^3_3 & = \frac{1}{4}\sqrt{10} & \bar{\Pi}^1_5 & = \frac{1}{8}\sqrt{15} (21z^4-14z^2r^2+r^4) \\ \bar{\Pi}^0_2 & = \frac{1}{2}(3z^2-r^2) & \bar{\Pi}^0_4 & = \frac{1}{8}(35 z^4-30 r^2 z^2 +3r^4 ) & \bar{\Pi}^2_5 & = \frac{1}{4}\sqrt{105}(3z^2-r^2)z \\ \bar{\Pi}^1_2 & = \sqrt{3}z & \bar{\Pi}^1_4 & = \frac{\sqrt{10}}{4} z(7z^2-3r^2) & \bar{\Pi}^3_5 & = \frac{1}{16}\sqrt{70} (9z^2-r^2) \\ \bar{\Pi}^2_2 & = \frac{1}{3}\sqrt{3} & \bar{\Pi}^2_4 & = \frac{1}{4}\sqrt{5}(7z^2-r^2) & \bar{\Pi}^4_5 & = \frac{3}{8}\sqrt{35} z \\ \bar{\Pi}^0_3 & = \frac{1}{2} z(5z^2-3r^2) & \bar{\Pi}^3_4 & = \frac{1}{4}\sqrt{70}\;z & \bar{\Pi}^5_5 & = \frac{3}{16}\sqrt{14} \\ \end{matrix} }

The lowest functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_m(x,y)\,} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_m(x,y)\,} are:

m Am Bm
0 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\,}
1 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\,}
2 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2-y^2\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2xy\,}
3 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3-3xy^2\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3x^2y -y^3\, }
4 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^4 - 6x^2 y^2 +y^4\,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4x^3y-4xy^3\,}
5 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^5-10x^3y^2+ 5xy^4\, } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5x^4y -10x^2y^3+y^5\, }

Examples

Thus, for example, the angular part of one of the nine normalized spherical g atomic orbitals is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C^2_4(x,y,z) = \sqrt{\frac{9}{4\pi}} \sqrt{\frac{5}{16}} (7z^2-r^2)(x^2-y^2). }

One of the 7 components of a real multipole of order 3 (octupole) of a system of N charges qi is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^1_3(x,y,z) = \frac{1}{4}\sqrt{6}\sum_{i=1}^N q_i (5z_i^2-r_i^2) y_i . }

Spherical harmonics in Cartesian form

The following expresses normalized spherical harmonics in Cartesian coordinates (Condon-Shortley phase):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^\ell\, \begin{pmatrix} Y_\ell^{m} \\ Y_\ell^{-m} \end{pmatrix} = \left[\frac{2\ell+1}{4\pi}\right]^{1/2} \bar{\Pi}^m_\ell \begin{pmatrix} (-1)^m (A_m + i B_m)/\sqrt{2} \\ \qquad (A_m - i B_m)/\sqrt{2} \\ \end{pmatrix} , \qquad m > 0. }

and for m = 0:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^\ell\,Y_\ell^{0} \equiv \sqrt{\frac{2\ell+1}{4\pi}} \bar{\Pi}^0_\ell . }

Here

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_m(x,y) = \sum_{p=0}^m \binom{m}{p} x^p y^{m-p} \cos (m-p) \frac{\pi}{2}, }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_m(x,y) = \sum_{p=0}^m \binom{m}{p} x^p y^{m-p} \sin (m-p) \frac{\pi}{2}, }

and for m > 0:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{\Pi}^m_\ell(z) = \left[\frac{(\ell-m)!}{(\ell+m)!}\right]^{1/2} \sum_{k=0}^{\left \lfloor (\ell-m)/2\right \rfloor} (-1)^k 2^{-\ell} \binom{\ell}{k}\binom{2\ell-2k}{\ell} \frac{(\ell-2k)!}{(\ell-2k-m)!} \; r^{2k}\; z^{\ell-2k-m}. }

For m = 0:

Examples

Using the expressions for , , and listed explicitly above we obtain: