Separation axioms

From Citizendium, the Citizens' Compendium
Jump to: navigation, search
This article is developing and not approved.
Main Article
Talk
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and not meant to be cited; by editing it you can help to improve it towards a future approved, citable version. These unapproved articles are subject to a disclaimer.

In topology, separation axioms describe classes of topological space according to how well the open sets of the topology distinguish between distinct points.


Terminology

A neighbourhood of a point x in a topological space X is a set N such that x is in the interior of N; that is, there is an open set U such that . A neighbourhood of a set A in X is a set N such that A is contained in the interior of N; that is, there is an open set U such that .

Subsets U and V are separated in X if U is disjoint from the closure of V and V is disjoint from the closure of U.

A Urysohn function for subsets A and B of X is a continuous function f from X to the real unit interval such that f is 0 on A and 1 on B.

Axioms

A topological space X is

  • T0 if for any two distinct points there is an open set which contains just one
  • T1 if for any two points x, y there are open sets U and V such that U contains x but not y, and V contains y but not x
  • T2 if any two distinct points have disjoint neighbourhoods
  • T2½ if distinct points have disjoint closed neighbourhoods
  • T3 if a closed set A and a point x not in A have disjoint neighbourhoods
  • T3½ if for any closed set A and point x not in A there is a Urysohn function for A and {x}
  • T4 if disjoint closed sets have disjoint neighbourhoods
  • T5 if separated sets have disjoint neighbourhoods
  • Hausdorff is a synonym for T2
  • completely Hausdorff is a synonym for T2½
  • regular if T0 and T3
  • completely regular if T0 and T3½
  • Tychonoff is completely regular and T1
  • normal if T0 and T4
  • completely normal if T1 and T5
  • perfectly normal if normal and every closed set is a Gδ

Properties

  • A space is T1 if and only if each point (singleton) forms a closed set.
  • Urysohn's Lemma: if A and B are disjoint closed subsets of a T4 space X, there is a Urysohn function for A and B'.

References