Quantum mechanics/Timelines

From Citizendium, the Citizens' Compendium
Jump to: navigation, search
This article is developing and not approved.
Main Article
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Timelines [?]
Advanced [?]
A timeline (or several) relating to Quantum mechanics.

Founding work

c 1805: Thomas Young's double-slit experiment demonstrating the wave nature of light.
1896: Henri Becquerel discovers radioactivity.
1897: Joseph John Thomson's cathode ray tube experiments (discovers the electron and its negative charge).
1850 - 1900: The study of black body radiation, which gave the unexplainable UV catastrophe.
1900: The study of black body radiation led Max Planck to quantization of energy; full explanation of spectrum, including the ultraviolet (UV).
1905: The photoelectric effect: Explained by Einstein using the concept of photons, particles of light with quantized energy.
1909: Robert Millikan's oil-drop experiment, which showed that electric charge occurs as quanta (whole units).
1911: Ernest Rutherford's gold foil experiment disproved the plum pudding model of the atom which suggested that the mass and positive charge of the atom are almost uniformly distributed.
1913: Niels Bohr's explanation of stationary states of hydrogen atom
1920: Otto Stern and Walther Gerlach conduct the Stern-Gerlach experiment, which demonstrates a doublet nature of spectra, later interpreted as spin.
1927: Clinton Davisson and Lester Germer demonstrate the wave nature of the electron [1] in the Electron diffraction experiment.
1935: The EPR paper by Einstein and two collaborators points out an important, and previously non-understood implication of quantum mechanics
1955: Clyde L. Cowan and Frederick Reines confirm the existence of the neutrino in the neutrino experiment.
1961: Claus Jönsson`s double-slit experiment with electrons.
1964: J. S. Bell's theorem proves that so-called 'local' theories cannot predict quantum outcomes
1980: The Quantum Hall effect, discovered by Klaus von Klitzing. The quantized version of the Hall effect has allowed for the definition of a new practical standard for electrical resistance and for an extremely precise independent determination of the fine structure constant.
1982: Alain Aspect's group at the University of Orsay confirm Bell's prediction, and prove Einstein was wrong

  1. The Davisson-Germer experiment, which demonstrates the wave nature of the electron