Perrin number

From Citizendium, the Citizens' Compendium
Jump to: navigation, search
This article is a stub and thus not approved.
Main Article
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
This editable Main Article is under development and not meant to be cited; by editing it you can help to improve it towards a future approved, citable version. These unapproved articles are subject to a disclaimer.

The Perrin numbers are defined by the recurrence relation

The first few numbers of the sequence are: 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, ...


A special property of the sequence of Perrin numbers is, that if is a prime number, then divides . The converse is false, because there exist composite numbers which divide . Those numbers are called Perrin pseudoprimes. The first few Perrin pseudoprimes are: 271441, 904631, 16532714, 24658561, 27422714, ...