Centraliser

From Citizendium
Revision as of 17:19, 29 December 2008 by Richard Pinch (Talk | contribs) (typo)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In group theory, the centraliser of a subset of a group (mathematics) is the set of all group elements which commute with every element of the given subset.

Formally, for S a subset of a group G, we define

The centraliser of any set is a subgroup of G, and the centraliser of S is equal to the centraliser of the subgroup generated by the subset S.

The centraliser of the empty set is the whole group G; the centraliser of the whole group G is the centre of G.