Zermelo-Fraenkel axioms

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The Zermelo-Fraenkel axioms form one of several possible formulations of axiomatic set theory.

The axioms

There are eight Zermelo-Fraenkel (ZF) axioms;[1] for the meaning of the symbols, see Logic symbols. The numbering of these axioms varies from author to author.

Note: This article contains logic symbols. Without proper rendering support, you may see question marks, boxes, or other symbols instead of logic symbols.
  • 1. Axiom of extensionality: If X and Y have the same elements, then X=Y
∀x∀y[∀z(z∈x ≡ z∈y) → x=y]
  • 2. Axiom of pairing: For any a and b there exists a set {a, b} that contains exactly a and b
∀x∀y∃z∀w(w∈z ≡ w=x ∨ w=y)
  • 3. Axiom schema of separation: If φ is a property with parameter p, then for any X and p there exists a set Y that contains all those elements uX that have the property φ; that is, the set Y={uX | φ(u, p)}
∀u1…∀uk[∀w∃v∀r(r∈v ≡ r∈w & ψx,û[r,û])]
  • 4. Axiom of union: For any set X there exists a set Y = X, the union of all elements of X
∀x∃y∀z[z∈y ≡ ∃w(w∈x & z∈w)]
  • 5. Axiom of power set: For any X there exists a set Y=P(X), the set of all subsets of X
∀x∃y∀z[z∈y ≡ ∀w(w∈z → w∈x)]
  • 6. Axiom of infinity: There exists an infinite set
∃x[∅∈x & ∀y(y∈x → ∪{y,{y}}∈x)]
  • 7. Axiom schema of replacement: If f is a function, then for any X there exists a set Y, denoted F(X) such that F(X)={f(x) | xX}
∀u1…∀uk[∀x∃!yφ(x,y,û) →
∀w∃v∀r(r∈v ≡ ∃s(s∈w & φx,y,û[s,r,û]))]
  • 8. Axiom of regularity: Every nonempty set has an ∈-minimal element
∀x[x≠∅ → ∃y(y∈x & ∀z(z∈x → ¬(z∈y)))]

If to these is added the axiom of choice, the theory is designated as the ZFC theory:[2]

  • 9. Axiom of choice: Every family of nonempty sets has a choice function

For further discussion of these axioms, see the bibliography and the linked articles.

References

  1. Thomas J Jech (1978). Set theory. Academic Press. ISBN 0123819504. 
  2. Bell, John L. (Spring 2009 Edition). Edward N. Zalta, editor:The Axiom of Choice. The Stanford Encyclopedia of Philosophy.