Sturm-Liouville theory/Proofs

From Citizendium
< Sturm-Liouville theory
Revision as of 09:55, 26 August 2009 by imported>Dan Nessett (Modified orthogonality proof headings so other proofs can be added in the future. Corrected link to S-L theory in "See Also" section)
Jump to navigation Jump to search
This article is basically copied from an external source and has not been approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Proofs [?]
 
More information relevant to Sturm-Liouville theory.

This article proves that solutions to the Sturm-Liouville equation corresponding to distinct eigenvalues are orthogonal. For background see Sturm-Liouville theory.

Orthogonality Theorem

, where and are solutions to the Sturm-Liouville equation corresponding to distinct eigenvalues and is the "weight" or "density" function.

Proof

Let and be solutions of the Sturm-Liouville equation [1] corresponding to eigenvalues and respectively. Multiply the equation for by (the complex conjugate of ) to get:

.

(Only , , , and may be complex; all other quantities are real.) Complex conjugate this equation, exchange and , and subtract the new equation from the original:


Integrate this between the limits and


.

The right side of this equation vanishes because of the boundary conditions, which are either:

periodic boundary conditions, i.e., that , , and their first derivatives (as well as ) have the same values at as at , or
that independently at and at either:
the condition cited in equation [2] or [3] holds or:
.

So: .

If we set , so that the integral surely is non-zero, then it follows that ; that is, the eigenvalues are real, making the differential operator in the Sturm-Liouville equation self-adjoint (hermitian); so:

.

It follows that, if and have distinct eigenvalues, then they are orthogonal. QED.

See also

References

1. Ruel V. Churchill, "Fourier Series and Boundary Value Problems", pp. 70-72, (1963) McGraw-Hill, ISBN 0-07-010841-2.