Separation axioms

From Citizendium
Revision as of 07:58, 1 November 2008 by imported>Richard Pinch (added more definitions, all in S+S)
Jump to navigation Jump to search

In topology, separation axioms describe classes of topological space according to how well the open sets of the topology distinguish between distinct points.


Terminology

A neighbourhood of a point x in a topological space X is a set N such that x is in the interior of N; that is, there is an open set U such that . A neighbourhood of a set A in X is a set N such that A is contained in the interior of N; that is, there is an open set U such that .

Subsets U and V are separated in X if U is disjoint from the closure of V and V is disjoint from the closure of U.

Properties

A topological space X is

  • T0 if for any two distinct points there is an open set which contains just one
  • T1 if for any two points x, y there are open sets U and V such that U contains x but not y, and V contains y but not x
  • T2 if any two distinct points have disjoint neighbourhoods
  • T2½ if distinct points have disjoint closed neighbourhoods
  • T3 if a closed set A and a point x not in A have disjoint neighbourhoods
  • T4 if disjoint closed sets have disjoint neighbourhoods
  • T5 if separated sets have disjoint neighbourhoods
  • Hausdorff is a synonym for T2
  • completely Hausdorff is a synonym for T2½
  • normal if T0 and T3
  • regular if T0 and T4
  • completely normal if T1 and T5
  • perfectly normal if normal and every closed set is a Gδ


References