S-unit

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, in the field of algebraic number theory, an S-unit generalises the idea of unit of the ring of integers of the field. Many of the results which hold for units are also valid for S-units.

Definition

Let K be a number field with ring of integers R. Let S be a finite set of prime ideals of R. An element x of R is an S-unit if the prime ideals dividing (x) are all in S. For the ring of rational integers Z one may also take S to be a finite set of prime numbers and define an S-unit to be an integer divisible only by the primes in S.

Properties

The S-units form a multiplicative group containing the units of R.

Dirichlet's unit theorem holds for S-units: the group of S-units is finitely generated, with rank (maximal number of multiplicatively independent elements) equal to r + s, where r is the rank of the unit group and s = |S|.

S-unit equation

The S-unit equation is a Diophantine equation

u + v = 1

with u, v restricted to being S-units of R. The number of solutions of this equation is finite and the solutions are effectively determined using transcendence theory. A variety of Diophantine equations are reducible in principle to some form of the S-unit equation: a notable example is Siegel's theorem on integral points on curves.

References