Quantum operation: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Hendra I. Nurdin
(New)
 
imported>Hendra I. Nurdin
mNo edit summary
Line 6: Line 6:
To illustrate, consider the [[projective measurement]] of an observable (i.e., a self-adjoint, densely defined operator) ''X'' of a quantum system <math>\scriptstyle Q</math> with Hilbert space  <math>\scriptstyle \mathbb{C}^n</math>, and suppose that ''X'' has a finite set of eigenvalues <math>\lambda_k</math> and a corresponding set of orthonormal eigenvectors <math>\scriptstyle \psi_k</math>, <math>\scriptstyle k\,=\,1,\ldots,n</math>. Say that the density operator of the system prior to measurement is <math>\scriptstyle \rho </math>, then after a projective measurement of ''X'' is performed and the outcome observed is <math>\scriptstyle \lambda_i </math> the state transforms <math>\scriptstyle \rho</math> to a new state <math>\scriptstyle \rho'=\frac{P_i \rho P_i}{{\rm tr}(P_i \rho P_i)}</math>, where <math>\scriptstyle P_i</math> is the projection operator <math>\scriptstyle P_i\,=\,\psi_i \psi_i^*</math>. The quantum operation associated with this measurement is a linear map <math>\scriptstyle T</math> acting on an unnormalized density operator  on <math>\scriptstyle \mathbb{C}^n</math> as <math>\scriptstyle T:\, d \,\mapsto\, {\rm tr}(P_i d P_i) </math>. Therefore, the density operator <math>\scriptstyle \rho'</math> after the measurement is just a normalized version of <math> \scriptstyle T(\rho)</math>.  
To illustrate, consider the [[projective measurement]] of an observable (i.e., a self-adjoint, densely defined operator) ''X'' of a quantum system <math>\scriptstyle Q</math> with Hilbert space  <math>\scriptstyle \mathbb{C}^n</math>, and suppose that ''X'' has a finite set of eigenvalues <math>\lambda_k</math> and a corresponding set of orthonormal eigenvectors <math>\scriptstyle \psi_k</math>, <math>\scriptstyle k\,=\,1,\ldots,n</math>. Say that the density operator of the system prior to measurement is <math>\scriptstyle \rho </math>, then after a projective measurement of ''X'' is performed and the outcome observed is <math>\scriptstyle \lambda_i </math> the state transforms <math>\scriptstyle \rho</math> to a new state <math>\scriptstyle \rho'=\frac{P_i \rho P_i}{{\rm tr}(P_i \rho P_i)}</math>, where <math>\scriptstyle P_i</math> is the projection operator <math>\scriptstyle P_i\,=\,\psi_i \psi_i^*</math>. The quantum operation associated with this measurement is a linear map <math>\scriptstyle T</math> acting on an unnormalized density operator  on <math>\scriptstyle \mathbb{C}^n</math> as <math>\scriptstyle T:\, d \,\mapsto\, {\rm tr}(P_i d P_i) </math>. Therefore, the density operator <math>\scriptstyle \rho'</math> after the measurement is just a normalized version of <math> \scriptstyle T(\rho)</math>.  


To look at a slightly more complicated example than described in the previous paragraph, imagine that we now have an infinite ensemble of identical copies of the quantum system <math>\scriptstyle Q</math> and a projective measurement of ''X'' is performed on each copy of <math>\scriptstyle Q</math>. Furthermore, suppose that we perform a ''selective'' measurement on this ensemble by discarding, after the measurements have been made, all systems in the ensemble who measurement outcome is {\em} not <math>\scriptstyle \lambda_1</math> or <math>\scriptstyle \lambda_n </math>. Now, if each system in the ensemble has been identically  prepared in a state with density operator <math>\rho</math> then the density operator of the reduced ensemble after selective measurement can be described via the quantum operation <math>\scriptstyle T</math> given by <math>\scriptstyle T:\, d \,\mapsto \, P_1 d P_1 + P_n d P_n</math>. That is, <math>\scriptstyle T(\rho)= P_1 \rho P_1 + P_n \rho P_n</math> and the density operator <math>\rho'</math> of the post-measurement ensemble is simply <math>\scriptstyle \rho' \,=\, \frac{T(\rho)}{{\rm tr}(\rho)}</math>. Descriptions of more complex transformation of the state of ensembles of quantum systems can be conveniently be given via the formalism of  [[quantum operation valued measure|quantum operation valued measures]].
To look at a slightly more complicated example than described in the previous paragraph, imagine that we now have an infinite ensemble of identical copies of the quantum system <math>\scriptstyle Q</math> and a projective measurement of ''X'' is performed on each copy of <math>\scriptstyle Q</math>. Furthermore, suppose that we perform a ''selective'' measurement on this ensemble by discarding, after the measurements have been made, all systems in the ensemble who measurement outcome is {\em} not <math>\scriptstyle \lambda_1</math> or <math>\scriptstyle \lambda_n </math>. Now, if each system in the ensemble has been identically  prepared in a state with density operator <math>\rho</math> then the density operator of the reduced ensemble after selective measurement can be described via the quantum operation <math>\scriptstyle T</math> given by <math>\scriptstyle T:\, d \,\mapsto \, P_1 d P_1 + P_n d P_n</math>. That is, <math>\scriptstyle T(\rho)= P_1 \rho P_1 + P_n \rho P_n</math> and the density operator <math>\rho'</math> of the post-measurement ensemble is simply <math>\scriptstyle \rho' \,=\, \frac{T(\rho)}{{\rm tr}(T(\rho))}</math>.  
 
Descriptions of more complex transformation of the state of ensembles of quantum systems can be conveniently be given via the formalism of  [[quantum operation valued measure|quantum operation valued measures]].
   
   



Revision as of 00:24, 11 April 2009

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In physics, in particular in mathematical physics, a quantum operation is a mathematical formalism used to describe general transformations of states of a quantum (mechanical) system. The state of a quantum system on a Hilbert space is represented by a non-negative definite trace class operator on with trace equal to one. Such operators are called density operators. However, the quantum operation formalism is not defined on density operators, but rather on more general class of non-negative definite trace class operators that need not have trace one, that is the class that is sometimes referred to as unnormalized density operators.

Suppose that the class of unnormalized density operators is denoted by then a quantum operation T is a linear map that takes any element of and sends it to another element of with the property that for all , where denotes the trace of .

To illustrate, consider the projective measurement of an observable (i.e., a self-adjoint, densely defined operator) X of a quantum system with Hilbert space , and suppose that X has a finite set of eigenvalues and a corresponding set of orthonormal eigenvectors , . Say that the density operator of the system prior to measurement is , then after a projective measurement of X is performed and the outcome observed is the state transforms to a new state , where is the projection operator . The quantum operation associated with this measurement is a linear map acting on an unnormalized density operator on as . Therefore, the density operator after the measurement is just a normalized version of .

To look at a slightly more complicated example than described in the previous paragraph, imagine that we now have an infinite ensemble of identical copies of the quantum system and a projective measurement of X is performed on each copy of . Furthermore, suppose that we perform a selective measurement on this ensemble by discarding, after the measurements have been made, all systems in the ensemble who measurement outcome is {\em} not or . Now, if each system in the ensemble has been identically prepared in a state with density operator then the density operator of the reduced ensemble after selective measurement can be described via the quantum operation given by . That is, and the density operator of the post-measurement ensemble is simply .

Descriptions of more complex transformation of the state of ensembles of quantum systems can be conveniently be given via the formalism of quantum operation valued measures.