Normal subgroup

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In group theory, a branch of mathematics, a normal subgroup, also known as invariant subgroup, or normal divisor, is a (proper or improper) subgroup H of the group G that is invariant under conjugation by all elements of G.

Two elements, a′ and a, of G are said to be conjugate by gG, if a′ = g a g−1. Clearly, a = g−1 a′ g, so that conjugation is symmetric; a and a′ are conjugate partners.

If for all hH and all gG it holds that: g h g−1H, then H is a normal subgroup of G, (also expressed as "H is invariant in G"). That is, with h in H all conjugate partners of h are also in H.

Equivalent definitions

A subgroup H of a group G is termed normal if the following equivalent conditions are satisfied:

  1. Given any and , we have
  2. H occurs as the kernel of a homomorphism from G. In other words, there is a homomorphism such that the inverse image of the identity element of K is H.
  3. Every inner automorphism of G sends H to within itself
  4. Every inner automorphism of G restricts to an automorphism of H
  5. The left cosets and right cosets of H are always equal: . (This is often expressed as: "H is simultaneously left- and right-invariant").

Some elementary examples and counterexamples

Klein's Vierergruppe in S4

The set of all permutations of 4 elements forms the symmetric group S4, which is of order of 4! = 24. The group of the following four permutations is a subgroup and has the structure of Felix Klein's Vierergruppe:

V4 ≡ {(1), (12)(34), (13)(24), (14)(23)}

It is easily verified that V4 is a normal subgroup of S4. [Conjugation preserves the cycle structure (..)(..) and V4 contains all elements with this structure.]

All subgroups in Abelian groups

In an Abelian group, every subgroup is normal. This is because if is an Abelian group, and , then .

More generally, any subgroup inside the center of a group is normal.

It is not, however, true that if every subgroup of a group is normal, then the group must be Abelian. A counterexample is the quaternion group.

All characteristic subgroups

A characteristic subgroup of a group is a subgroup which is invariant under all automorphisms of the whole group. Characteristic subgroups are normal, because normality requires invariance only under inner automorphisms, which are a particular kind of automorphism.

In particular, subgroups like the center, the commutator subgroup, the Frattini subgroup are examples of characteristic, and hence normal, subgroups.

A smallest counterexample

The smallest example of a non-normal subgroup is a subgroup of order two in the symmetric group on three elements. Explicitly, we can take the cyclic subgroup of order two generated by the 2-cycle in the symmetric group of permutations on symbols .

Properties

The intersection of any family of normal subgroups is again a normal subgroup. We can therefore define the normal subgroup generated by a subset S of a group G to be the intersection of all normal subgroups of G containing S.

Quotient group

The quotient group of a group G by a normal subgroup N is defined as the set of (left or right) cosets:

with the the group operations

and the coset as identity element. It is easy to check that these define a group structure on the set of cosets and that the quotient map is a group homomorphism. Because of this property N is sometimes called a normal divisor of G.

First Isomorphism Theorem

The First Isomorphism Theorem for groups states that if is a group homomorphism then the kernel of f, say K, is a normal subgroup of G, and the map f factors through the quotient map and an injective homomorphism i:


External links