NMR spectroscopy/Catalogs/Nuclear Magnetic Resonance spectroscopy experiments: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David E. Volk
mNo edit summary
m (Text replacement - "Magnetic Resonance Imaging" to "Magnetic resonance imaging")
 
(48 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{subpages}}
'''Nuclear Magnetic Resonance experiments''' can have multiple variations added, such as form of solvent suppression, sensitivity enhancement, form of inversion or soft pulses, decoupling schemes and so on.  This list refers to the basic form of the experiment and references, in general, but not always, are made to the earliest published form of the experiment.
'''Nuclear Magnetic Resonance experiments''' can have multiple variations added, such as form of solvent suppression, sensitivity enhancement, form of inversion or soft pulses, decoupling schemes and so on.  This list refers to the basic form of the experiment and references, in general, but not always, are made to the earliest published form of the experiment.


Line 43: Line 45:
<tr><td>APT</td>
<tr><td>APT</td>
<td><sup>13</sup>C</td>
<td><sup>13</sup>C</td>
<td> seperate C, CH, CH<sub>2</sub> and CH<sub>3</sub> </td>
<td> separate C, CH, CH<sub>2</sub> and CH<sub>3</sub> </td>
<td> carbon detection </td>
<td> carbon detection </td>
<td> Patt & Schoolery
<ref name=Patt>{{cite journal | author = Patt, S.L. & Schoolery, J.N. | title = Attached Proton Test for Carbon-13 NMR | journal = J. Magn. Reson. | volume = 46 | pages = 535-539 | year = 1982 }}</ref></td>
</tr>
<tr><td>BEST</td>
<td> Decoupling scheme</td>
<td> Excellent Decoupling scheme </td>
<td> none </td>
<td> Zhang & Gorenstein<ref name=Best>{{cite journal | author = Zhang, S. & Gorenstein, D.G. | title = BEST Homonuclear Adiabatic Decoupling for <sup>13</sup>C- and <sup>15</sup>N-Double-Labeled Proteins| journal = J. Magn. Reson. | volume = 138 | pages = 281-287| year = 1999 }}</ref></td>
</tr>
<tr><td>BIRD</td>
<td> Decoupling scheme</td>
<td> BIlinear Rotation Decoupling </td>
<td> - </td>
<td> - </td>
<td> Garbow, Weitekamp & Pines<ref name=Garbow>{{cite journal | author = Garbow, J.R., Weitekamp, D.P. & Pines, A. | title = Bilinear Rotation Decoupling of Homonuclear Scalar Interactions | journal = Chem. Phys. Lett. | volume = 93 | pages = 504-508| year = 1982 }}</ref></td>
</tr>
</tr>


<tr><td>[[CBCA(CO)NH]]</td>
<tr><td>CBCA(CO)NH</td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha-1</math></sub>, C<sub><math>\beta-1</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha-1</math></sub>, C<sub><math>\beta-1</math></sub></td>
<td> Protein NMR assignments </td>
<td> Protein NMR assignments </td>
Line 55: Line 73:
<ref name=GB1992a>{{cite journal | author = Grzesiek, S. & Bax, A. | title = Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR | journal = J. Am. Chem. Soc. | volume = 114| pages = 6291-6293 | year = 1992 }}</ref></td>
<ref name=GB1992a>{{cite journal | author = Grzesiek, S. & Bax, A. | title = Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR | journal = J. Am. Chem. Soc. | volume = 114| pages = 6291-6293 | year = 1992 }}</ref></td>
</tr>
</tr>
<tr><td>[[CBCANH]]</td>
<tr><td>CBCANH</td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha</math></sub>, C<sub><math>\beta</math></sub>, C<sub><math>\alpha-1</math></sub>, C<sub><math>\beta-1</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha</math></sub>, C<sub><math>\beta</math></sub>, C<sub><math>\alpha-1</math></sub>, C<sub><math>\beta-1</math></sub></td>
<td>Protein NMR assignments</td>
<td>Protein NMR assignments</td>
Line 62: Line 80:
<ref name=GB1992b>{{cite journal | author = Grzesiek, S. & Bax, A. | title = An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins | journal = J. Magn. Reson. | volume = 99| pages = 201-207 | year = 1992 }}</ref></td>
<ref name=GB1992b>{{cite journal | author = Grzesiek, S. & Bax, A. | title = An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins | journal = J. Magn. Reson. | volume = 99| pages = 201-207 | year = 1992 }}</ref></td>
</tr>
</tr>
<tr><td>[[COSY]]</td>
 
<tr><td>CHIRP</td>
<td> Adiabatic Decoupling scheme</td>
<td> linear for wide sweep width </td>
<td>  </td>
<td> See Kupce & Freeman<ref name=kupce1>{{cite journal | author = Kupce, E. & Freeman, R. | title = Optimized adiabatic pulses for wideband spin inversion | journal = J. Magn. Reson. Series A | volume = 118| pages = 299-303 | year = 1996 }}</ref> and references therein</td>
</tr>
 
<tr><td>COSY</td>
<td>H<sub>i</sub>, H<sub>i-1</sub>, H<sub>i+1</sub></td>
<td>H<sub>i</sub>, H<sub>i-1</sub>, H<sub>i+1</sub></td>
<td>Correlate neighboring protons</td>
<td>Correlate neighboring protons</td>
<td> signal overlap </td>
<td> signal overlap </td>
<td> Bax and Freeman  
<td> Aue et al<ref name=Aue>{{cite journal | author = Aue, W.P., Bartholdi, E. and Ernst, R.R. | title = Two-dimensional spectroscopy. Application to nuclear magnetic resonance | journal = J. Chem. Phys. | volume = 64 | pages = 2229-2246 | year = 1975 }}</ref> and Bax and Freeman<ref name=Freeman1981>{{cite journal | author = Bax, A. & Freeman, R. | title = Investigation of complex networks of spin-spin coupling by two-dimensional NMR | journal = J. Magn. Reson. | volume = 44| pages = 542-561 | year = 1981 }}</ref></td>
<ref name=Freeman1981>{{cite journal | author = Bax, A. & Freeman, R. | title = Investigation of complex networks of spin-spin coupling by two-dimensional NMR | journal = J. Magn. Reson. | volume = 44| pages = 542-561 | year = 1981 }}</ref></td>
</tr>
 
<tr><td>COLOC</td>
<td> 1H & 13C</td>
<td> COrrleation via LOng-range Coupling</td>
<td> - </td>
<td> Kessler et al.<ref name=Kessler84>{{cite journal | author = Kessler, H., Griesinger, C., Zarbock, J. and Loosli, H.R. | title = Assignment of carbonyl carbons and sequence analysis in peptides by heteronuclear shift correlation via small coupling constants with broadband decoupling in t1 (COLOC) | journal = J. Magn. Reson. | volume = 57 | pages = 331-336| year = 1984 }}</ref></td>
</tr>
 
 
<tr><td>DEPT (<sup>13</sup>C-DEPT)</td>
<td><sup>13</sup>C</td>
<td>Differentiate CH, CH<sub>2</sub> and CH<sub>3</sub></td>
<td> don't observe quaternary <sup>13</sup>C </td>
<td> Bendall, Doddrell & Pegg <ref name=Pegg>{{cite journal | author = Bendall, M.R., Doddrell, D.D. & Pegg, D.T. | title= Editing of carbon-13 NMR spectra. 1. A pulse sequence for the generation of subspectra | journal = J. Am. Chem. Soc. | volume = 103| pages = 4603-4605 | year = 1981 }}</ref></td>
</tr>
 
<tr><td>DIPSI</td>
<td> Decoupling/Spin-lock scheme</td>
<td> decoupling or TOCSY </td>
<td>  </td>
<td> Shaka, Lee & Pines <ref name=shaka4>{{cite journal | author = Shaka, A.J., Lee, C.J. & Pines, A. | title = Iterative Schemes for Bilinear Operators - Application to Spin Decoupling | journal = J. Magn. Reson. | volume = 77| pages = 274 | year = 1988 }}</ref></td>
</tr>
 
 
<tr><td>Double WURST</td>
<td> Decoupling scheme</td>
<td> Removes Bloch-Seigert Shifts </td>
<td>  </td>
<td> Zhang & Gorenstein <ref name=2wurst>{{cite journal | author = Zhang, S. & Gorenstein, D.G. | title = “Double-WURST” Decoupling for <sup>15</sup>N- and <sup>13</sup>C-Double-Labeled Proteins in a High Magnetic Field | journal = J. Magn. Reson. Series A | volume = 123| pages = 181-187 | year = 1996 }}</ref></td>
</tr>
 
 
<tr><td>DQF-COSY</td>
<td>see COSY</td>
<td>Reduces diagonal peaks</td>
<td> - </td>
<td> Piantini, Sorensen & Ernst
<ref name=Piantini>{{cite journal | author = Piantini, U., Sorensen, O.W. & Ernst, R.R. | title = Multiple quantum filters for elucidating NMR coupling networks | journal = J. Am. Chem. Soc. | volume = 104| pages = 6800-6801 | year = 1982 }}</ref></td>
</tr>
 
<tr><td>GARP</td>
<td> Decoupling scheme</td>
<td> Better than MLEV & WALTZ </td>
<td> worse than adiabatic (WURST) </td>
<td> Shaka, Barker & Freeman
<ref name=Shaka3>{{cite journal | author = Shaka, A.J., Barker, P.B. & Freeman, R. | title = Computer-optimized decoupling scheme for wideband applications and low-level operation | journal = J. Magn. Reson. | volume = 64| pages = 574 | year = 1985 }}</ref> </td>
</tr>
</tr>
<tr><td>[[HACAHB]]</td>
 
 
<tr><td>HACAHB</td>
<td>H<sub><math>\alpha</math></sub>, C<sub><math>\alpha</math></sub>, H<sub><math>\beta</math></sub></td>
<td>H<sub><math>\alpha</math></sub>, C<sub><math>\alpha</math></sub>, H<sub><math>\beta</math></sub></td>
<td>Selective COSY</td>
<td>Selective COSY</td>
Line 76: Line 150:
<ref name=GB1995a>{{cite journal | author = Grzesiek, S., Kuboniwa, H., Hinck, A.P. & Bax, A. | title = Multiple-Quantum Line Narrowing for Measurement of H<sub><math>\alpha</math></sub>-H<sub><math>\beta</math></sub> J Couplings in Isotopically Enriched Proteins | journal = J. Am. Chem. Soc. | volume = 117| pages = 5312-5315 | year = 1995 }}</ref></td>
<ref name=GB1995a>{{cite journal | author = Grzesiek, S., Kuboniwa, H., Hinck, A.P. & Bax, A. | title = Multiple-Quantum Line Narrowing for Measurement of H<sub><math>\alpha</math></sub>-H<sub><math>\beta</math></sub> J Couplings in Isotopically Enriched Proteins | journal = J. Am. Chem. Soc. | volume = 117| pages = 5312-5315 | year = 1995 }}</ref></td>
</tr>
</tr>
<tr><td>[[HBHA(CO)NH]]</td>
<tr><td>HBHA(CO)NH</td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\alpha-1</math></sub>, H<sub><math>\beta-1</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\alpha-1</math></sub>, H<sub><math>\beta-1</math></sub></td>
<td>Previous alpha/beta protons</td>
<td>Previous alpha/beta protons</td>
Line 83: Line 157:
<ref name=GB1993a>{{cite journal | author = Grzesiek, S. & Bax, A. | title = Amino acid type determination in the sequential assignment procedure of uniformly <sup>13</sup>C/<sup>15</sup>N-enriched proteins | journal = J. Biomol. NMR | volume = 3 | pages = 185-204 | year = 1993 }}</ref></td>
<ref name=GB1993a>{{cite journal | author = Grzesiek, S. & Bax, A. | title = Amino acid type determination in the sequential assignment procedure of uniformly <sup>13</sup>C/<sup>15</sup>N-enriched proteins | journal = J. Biomol. NMR | volume = 3 | pages = 185-204 | year = 1993 }}</ref></td>
</tr>
</tr>
<tr><td>[[HBCBCACOCAHA]]</td>
<tr><td>HBCBCACOCAHA</td>
<td> H<sub><math>\alpha</math></sub>, C<sub><math>\alpha</math></sub>, C<sub><math>\beta</math></sub>, C<sub>O</sub> </td>
<td> H<sub><math>\alpha</math></sub>, C<sub><math>\alpha</math></sub>, C<sub><math>\beta</math></sub>, C<sub>O</sub> </td>
<td>Protein NMR assignments</td>
<td>Protein NMR assignments</td>
Line 91: Line 165:
</tr>
</tr>


<tr><td>[[HBCBCACONNH]]</td>
<tr><td>HBCBCACONNH</td>
<td> H<sub><math>\alpha</math></sub>, C<sub><math>\alpha</math></sub>, C<sub><math>\beta</math></sub>, N<sub>H+1, H<sub>N+1</sub></sub>  </td>
<td> H<sub><math>\alpha</math></sub>, C<sub><math>\alpha</math></sub>, C<sub><math>\beta</math></sub>, N<sub>H+1, H<sub>N+1</sub></sub>  </td>
<td>Protein NMR Assignments</td>
<td>Protein NMR Assignments</td>
Line 98: Line 172:
</tr>
</tr>


<tr><td>[[(HB)CB(CGCD)HD]]</td>
<tr><td>(HB)CB(CGCD)HD</td>
<td> C<sub><math>\beta</math></sub> and H<sub><math>\delta</math></sub> of aromatic residues</td>
<td> C<sub><math>\beta</math></sub> and H<sub><math>\delta</math></sub> of aromatic residues</td>
<td>Protein NMR Assignments</td>
<td>Protein NMR Assignments</td>
Line 106: Line 180:
</tr>
</tr>


<tr><td>[[(HB)CB(CGCDCE)HE]]</td>
<tr><td>(HB)CB(CGCDCE)HE</td>
<td> C<sub><math>\beta</math></sub> and H<sub><math>\epsilon</math></sub> of aromatic residues</td>
<td> C<sub><math>\beta</math></sub> and H<sub><math>\epsilon</math></sub> of aromatic residues</td>
<td>Protein NMR Assignments</td>
<td>Protein NMR Assignments</td>
Line 112: Line 186:
<td> Yamazaki, Forman-Kay & Kay <ref name=Yamazaki/> </td>
<td> Yamazaki, Forman-Kay & Kay <ref name=Yamazaki/> </td>
</tr>
</tr>
<tr><td>[[(HCA)CO(CA)NH]]</td>
<tr><td>(HCA)CO(CA)NH</td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub>O</sub>, C<sub>O-1</sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub>O</sub>, C<sub>O-1</sub></td>
<td>Protein NMR assignments</td>
<td>Protein NMR assignments</td>
Line 118: Line 192:
<td> Lohr and Ruterjans<ref name=Lohr>{{cite journal | author = Lohr, F. and Ruterjans, H. | title = A new triple-resonance experiment for the sequential assignment of backbone resonances in proteins | journal = J. Biomol. NMR | volume = 6 | pages = 189-197 | year = 1995 }}</ref></td>
<td> Lohr and Ruterjans<ref name=Lohr>{{cite journal | author = Lohr, F. and Ruterjans, H. | title = A new triple-resonance experiment for the sequential assignment of backbone resonances in proteins | journal = J. Biomol. NMR | volume = 6 | pages = 189-197 | year = 1995 }}</ref></td>
</tr>
</tr>
<tr><td>[[HCACOCAN]]</td>
<tr><td>HCACOCAN</td>
<td>C<sub>O</sub>, C<sub><math>\alpha</math></sub>, H<sub><math>\alpha</math></sub>, H<sub>N</sub>, H<sub>N+1</sub>, N<sub>H</sub>, N<sub>H+1</sub></td>
<td>C<sub>O</sub>, C<sub><math>\alpha</math></sub>, H<sub><math>\alpha</math></sub>, H<sub>N</sub>, H<sub>N+1</sub>, N<sub>H</sub>, N<sub>H+1</sub></td>
<td>Protein NMR assignments</td>
<td>Protein NMR assignments</td>
Line 124: Line 198:
<td> Lohr and Ruterjans <ref name=Lohr/></td>
<td> Lohr and Ruterjans <ref name=Lohr/></td>
</tr>
</tr>
<tr><td>[[HCAN]]</td>
<tr><td>HCAN</td>
<td>H<sub><math>\alpha</math></sub>, C<sub><math>\alpha</math></sub>, N<sub>H</sub>, N<sub>H+1</sub></td>
<td>H<sub><math>\alpha</math></sub>, C<sub><math>\alpha</math></sub>, N<sub>H</sub>, N<sub>H+1</sub></td>
<td>Protein NMR Assignments</td>
<td>Protein NMR Assignments</td>
Line 131: Line 205:
<ref name=Powers>{{cite journal | author = Powers, R., Gronenborn, A.M., Clore, G.M. and Bax, A. | title = Three-dimensional Triple-Resonance NMR of <sup>13</sup>C/<sup>15</sup>N-Enriched Proteins Using Constant-Time Evolution | journal = J. Magn. Reson. | volume = 94 | pages = 209-213 | year = 1991 }}</ref></td>
<ref name=Powers>{{cite journal | author = Powers, R., Gronenborn, A.M., Clore, G.M. and Bax, A. | title = Three-dimensional Triple-Resonance NMR of <sup>13</sup>C/<sup>15</sup>N-Enriched Proteins Using Constant-Time Evolution | journal = J. Magn. Reson. | volume = 94 | pages = 209-213 | year = 1991 }}</ref></td>
</tr>
</tr>
<tr><td>[[HCCH_TOCSY]]</td>
<tr><td>HCCH_TOCSY</td>
<td>(H<sub>i</sub>-C<sub>i</sub>) ---> H<sub><math>\chi</math></sub> </td>
<td>(H<sub>i</sub>-C<sub>i</sub>) ---> H<sub><math>\chi</math></sub> </td>
<td>Assign entire spin systems</td>
<td>Assign entire spin systems</td>
Line 139: Line 213:
</tr>
</tr>


<tr><td>[[H(CCO)NH]]</td>
<tr><td>H(CCO)NH</td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\chi-1</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\chi-1</math></sub></td>
<td>Proteins: correlate proton spin system to next amide group</td>
<td>Proteins: correlate proton spin system to next amide group</td>
Line 147: Line 221:
</tr>
</tr>


<tr><td>[[(H)C(CO)NH]]</td>
<tr><td>(H)C(CO)NH</td>
<td>H<sub>N</sub>, N<sub>H</sub>, Cx-1</td>
<td>H<sub>N</sub>, N<sub>H</sub>, Cx-1</td>
<td>Proteins: correlate carbon spin system to next amide group</td>
<td>Proteins: correlate carbon spin system to next amide group</td>
Line 154: Line 228:
</tr>
</tr>


<tr><td>[[HETCOR]]</td>
<tr><td>HETCOR</td>
<td>H<sub>i</sub>, C<sub>i</sub></td>
<td>H<sub>i</sub>, C<sub>i</sub></td>
<td> similar to HSQC</td>
<td> similar to HSQC</td>
Line 161: Line 235:
</tr>
</tr>


 
<tr><td>HMBC</td>
 
<tr><td>[[HMBC]]</td>
<td>H<sub>i</sub>, C<sub>j,k,l,m</sub></td>
<td>H<sub>i</sub>, C<sub>j,k,l,m</sub></td>
<td>long-range C-H correlations, aromatic ring assignments</td>
<td>long-range C-H correlations, aromatic ring assignments</td>
Line 171: Line 243:
</tr>
</tr>


<tr><td>[[HNCA]]</td>
<tr><td>HMQC</td>
<td>H<sub>i</sub>, C<sub>i</sub></td>
<td>heteronuclear multiple quantum coherence</td>
<td> - </td>
<td> L. Mueller<ref name=Muller>{{cite journal | author = L. Mueller | title = Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence | journal = J. Am. Chem. Soc. | volume = 101 | pages = 4481-4484 | year = 1979 }}</ref></td>
</tr>
 
 
<tr><td>HNCA</td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha</math></sub>, C<sub><math>\alpha-1</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha</math></sub>, C<sub><math>\alpha-1</math></sub></td>
<td>Sequential alpha carbons</td>
<td>Sequential alpha carbons</td>
Line 178: Line 258:
<ref name=KITB>{{cite journal | author = Kay, L. E., Ikura, M., Tschudin, R. & Bax, A. | title = Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins  | journal = J. Magn. Reson. | volume = 89 | pages = 296 | year = 1990 }}</ref></td>
<ref name=KITB>{{cite journal | author = Kay, L. E., Ikura, M., Tschudin, R. & Bax, A. | title = Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins  | journal = J. Magn. Reson. | volume = 89 | pages = 296 | year = 1990 }}</ref></td>
</tr>
</tr>
<tr><td>[[HNCACB]]</td>
<tr><td>HNCACB</td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha</math></sub>, C<sub><math>\beta</math></sub>, C<sub><math>\alpha-1</math></sub>, C<sub><math>\beta-1</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha</math></sub>, C<sub><math>\beta</math></sub>, C<sub><math>\alpha-1</math></sub>, C<sub><math>\beta-1</math></sub></td>
<td>Sequential alpha/beta carbons</td>
<td>Sequential alpha/beta carbons</td>
Line 185: Line 265:
<ref name=Wittekind>{{cite journal | author = Wittekind, M. & Mueller, L. | title = HNCACB, a High-Sensitivy 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha- and Beta-Carbon Resonances in Proteins | journal = J. Magn. Reson., Series B. | volume = B101 | pages = 201-205 | year = 1993 }}</ref></td>
<ref name=Wittekind>{{cite journal | author = Wittekind, M. & Mueller, L. | title = HNCACB, a High-Sensitivy 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha- and Beta-Carbon Resonances in Proteins | journal = J. Magn. Reson., Series B. | volume = B101 | pages = 201-205 | year = 1993 }}</ref></td>
</tr>
</tr>
<tr><td>[[HN(CA)CO]]</td><td>H<sub>N</sub>, N<sub>H</sub>, C<sub>O</sub>, C<sub>O-1</sub>  </td>
<tr><td>HN(CA)CO</td><td>H<sub>N</sub>, N<sub>H</sub>, C<sub>O</sub>, C<sub>O-1</sub>  </td>
<td>Sequential carbonyl carbons</td>
<td>Sequential carbonyl carbons</td>
<td>weak C<sub>O-1</sub> signals, Hn exchange</td>
<td>weak C<sub>O-1</sub> signals, Hn exchange</td>
Line 191: Line 271:
<ref name=Yamazaki2>{{cite journal | author = Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. and Kay, L.E. | title = A Suite of Triple Resonance NMR Experiments for the Backbone Assignment of <sup>15</sup>N, <sup>13</sup>C, <sup>2</sup>H Labeled Proteins with High Sensitivity | journal = J. Am. Chem. Soc. | volume = 116 | pages = 11655-11666 | year = 1994 }}</ref></td>
<ref name=Yamazaki2>{{cite journal | author = Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. and Kay, L.E. | title = A Suite of Triple Resonance NMR Experiments for the Backbone Assignment of <sup>15</sup>N, <sup>13</sup>C, <sup>2</sup>H Labeled Proteins with High Sensitivity | journal = J. Am. Chem. Soc. | volume = 116 | pages = 11655-11666 | year = 1994 }}</ref></td>
</tr>
</tr>
<tr><td>[[HN(CA)HA]]</td>
<tr><td>HN(CA)HA</td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\alpha</math></sub>, H<sub><math>\alpha-1</math></sub> </td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\alpha</math></sub>, H<sub><math>\alpha-1</math></sub> </td>
<td>Sequential alpha protons</td>
<td>Sequential alpha protons</td>
Line 198: Line 278:
<ref name=KayWitt>{{cite journal | author = Kay, L. E., Wittikind, M., McCoy, M. A., Friedrichs, M. S. and Mueller, L. | title = 4D NMR Triple-Resonance Experiments for Assignment of Protein Backbone Nuclei Using Shared Constant-Time Evolution Periods | journal = J. Magn. Reson. | volume = 98 | pages = 443-450 | year = 1992 }}</ref></td>
<ref name=KayWitt>{{cite journal | author = Kay, L. E., Wittikind, M., McCoy, M. A., Friedrichs, M. S. and Mueller, L. | title = 4D NMR Triple-Resonance Experiments for Assignment of Protein Backbone Nuclei Using Shared Constant-Time Evolution Periods | journal = J. Magn. Reson. | volume = 98 | pages = 443-450 | year = 1992 }}</ref></td>
</tr>
</tr>
<tr><td>[[HN(C)N]]</td>
<tr><td>HN(C)N</td>
<td>H<sub>N</sub>,N<sub>H</sub>, N<sub>H-1</sub></td>
<td>H<sub>N</sub>,N<sub>H</sub>, N<sub>H-1</sub></td>
<td>Amide to previous nitrogen</td>
<td>Amide to previous nitrogen</td>
Line 205: Line 285:
<ref name=Panchal>{{cite journal | author = Panchal, SC, Bhavesh, NS & Hosur, RV | title = Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins | journal = J. Biomol. NMR | volume = 20 | pages = 135-147 | year = 2001 }}</ref></td>
<ref name=Panchal>{{cite journal | author = Panchal, SC, Bhavesh, NS & Hosur, RV | title = Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins | journal = J. Biomol. NMR | volume = 20 | pages = 135-147 | year = 2001 }}</ref></td>
</tr>
</tr>
<tr><td>[[HN(CA)NNH]]</td>
<tr><td>HN(CA)NNH</td>
<td> N<sub>H</sub>, H<sub>N</sub>, N<sub>H-1</sub>, N<sub>H+1</sub>  </td>
<td> N<sub>H</sub>, H<sub>N</sub>, N<sub>H-1</sub>, N<sub>H+1</sub>  </td>
<td>Sequential Protein amide groups</td>
<td>Sequential Protein amide groups</td>
Line 212: Line 292:
<ref name=Weisemann>{{cite journal | author = Weisemann, R., Ruterjans, H. & Bermel, W. | title = 3d Triple-resonance NMR techniques for the sequential assignment of NH and <sup>15</sup>N resonances in <sup>15</sup>N- and <sup>13</sup>C-labelled proteins | journal = J. Biomol. NMR | volume = 3 | pages = 113-120 | year = 1993 }}</ref></td>
<ref name=Weisemann>{{cite journal | author = Weisemann, R., Ruterjans, H. & Bermel, W. | title = 3d Triple-resonance NMR techniques for the sequential assignment of NH and <sup>15</sup>N resonances in <sup>15</sup>N- and <sup>13</sup>C-labelled proteins | journal = J. Biomol. NMR | volume = 3 | pages = 113-120 | year = 1993 }}</ref></td>
</tr>
</tr>
<tr><td>[[H(NCA)NNH]]</td>
<tr><td>H(NCA)NNH</td>
<td>  N<sub>H</sub>, H<sub>N</sub>, H<sub>N-1</sub>,H<sub>N+1</sub>  </td>
<td>  N<sub>H</sub>, H<sub>N</sub>, H<sub>N-1</sub>,H<sub>N+1</sub>  </td>
<td>Sequential Protein amide groups</td>
<td>Sequential Protein amide groups</td>
Line 220: Line 300:




<tr><td>[[HNCO]]</td>
<tr><td>HNCO</td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub>O-1</sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub>O-1</sub></td>
<td>Carbonyl carbon assignments</td>
<td>Carbonyl carbon assignments</td>
Line 227: Line 307:
<ref name=IKB>{{cite journal | author = Ikura, M., Kay, L. E. and Bax, A. | title = A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin | journal = Biochemistry | volume = 29 | pages = 4659-4667 | year = 1990 }}</ref></td>
<ref name=IKB>{{cite journal | author = Ikura, M., Kay, L. E. and Bax, A. | title = A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin | journal = Biochemistry | volume = 29 | pages = 4659-4667 | year = 1990 }}</ref></td>
</tr>
</tr>
<tr><td>[[HN(CO)CA]]</td>
<tr><td>HN(CO)CA</td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha-1</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha-1</math></sub></td>
<td>Assign previous alpha carbon</td>
<td>Assign previous alpha carbon</td>
Line 233: Line 313:
<td> Yamazaki, Lee, et al.<ref name=Yamazaki2/></td>
<td> Yamazaki, Lee, et al.<ref name=Yamazaki2/></td>
</tr>
</tr>
<tr><td>[[HN(CO)CACB]]</td>
<tr><td>HN(CO)CACB</td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha-1</math></sub>, C<sub><math>\beta-1</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\alpha-1</math></sub>, C<sub><math>\beta-1</math></sub></td>
<td>Previous alpha/beta carbons</td>
<td>Previous alpha/beta carbons</td>
Line 239: Line 319:
<td> - </td>
<td> - </td>


<tr><td>[[HN(COCA)CB]]</td>
<tr><td>HN(COCA)CB</td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\beta-1</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub><math>\beta-1</math></sub></td>
<td>Previous beta carbons</td>
<td>Previous beta carbons</td>
Line 246: Line 326:
<ref name=Wittekind/></td>
<ref name=Wittekind/></td>
</tr>
</tr>
<tr><td>[[(HN)CO(CO)NH]]</td>
<tr><td>(HN)CO(CO)NH</td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub>O</sub>, C<sub>O-1</sub> </td>
<td>H<sub>N</sub>, N<sub>H</sub>, C<sub>O</sub>, C<sub>O-1</sub> </td>
<td>Previous alpha/beta carbons</td>
<td>Previous alpha/beta carbons</td>
Line 253: Line 333:
</tr>
</tr>


<tr><td>[[HN(CO)HA]]</td><td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\alpha-1</math></sub></td><td>Previous alpha proton</td><td> Hn exchange</td><td> - </td>
<tr><td>HN(CO)HA</td><td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\alpha-1</math></sub></td><td>Previous alpha proton</td><td> Hn exchange</td><td> - </td>
</tr>
</tr>
<tr><td>[[HN(CO)HB]]</td>
<tr><td>HN(CO)HB</td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\beta-1</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\beta-1</math></sub></td>
<td>CO-H<sub><math>\beta-1</math></sub> coupling</td>
<td>CO-H<sub><math>\beta-1</math></sub> coupling</td>
Line 262: Line 342:
<ref name=Grz_Ikura>{{cite journal | author = Grzesiek, S., Ikura, M., Clore, G.M., Gronenborn, A.M. & Bax, A. | title = A 3D Triple-Resonance Technique for Qualitative Measurement of Carbonyl-H<sub><math>\beta</math></sub> J Couplings in Isotopically Enriched Proteins | journal = J. Magn. Reson. | volume = 96 | pages = 215-221 | year = 1992 }}</ref></td>
<ref name=Grz_Ikura>{{cite journal | author = Grzesiek, S., Ikura, M., Clore, G.M., Gronenborn, A.M. & Bax, A. | title = A 3D Triple-Resonance Technique for Qualitative Measurement of Carbonyl-H<sub><math>\beta</math></sub> J Couplings in Isotopically Enriched Proteins | journal = J. Magn. Reson. | volume = 96 | pages = 215-221 | year = 1992 }}</ref></td>
</tr>
</tr>
<tr><td>[[HNHA]]</td>
<tr><td>HNHA</td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\alpha</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\alpha</math></sub></td>
<td> alpha protons & <math>\phi</math>-backbone angles</td>
<td> alpha protons & <math>\phi</math>-backbone angles</td>
Line 269: Line 349:
</tr>
</tr>


<tr><td>[[HNHB]]</td>
<tr><td>HNHB</td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\beta</math></sub>, H<sub><math>\alpha-1</math></sub></td>
<td>H<sub>N</sub>, N<sub>H</sub>, H<sub><math>\beta</math></sub>, H<sub><math>\alpha-1</math></sub></td>
<td>(N-H<sub><math>\beta</math></sub> J-coupling)</td>
<td>(N-H<sub><math>\beta</math></sub> J-coupling)</td>
Line 279: Line 359:




<tr><td>[[HNH]]</td><td>H<sub>N(i,i-1,i+1)</sub>, N<sub>H(i,i-1,i+1)</sub></td><td>Sequential beta protons & backbone angles</td><td>weak Ca/Cb-1 signals, Hn exchange</td><td> - </td>
<tr><td>HNH</td><td>H<sub>N(i,i-1,i+1)</sub>, N<sub>H(i,i-1,i+1)</sub></td><td>Sequential beta protons & backbone angles</td><td>weak Ca/Cb-1 signals, Hn exchange</td><td> - </td>
</tr>
</tr>




<tr><td>[[HNN]]</td>
<tr><td>HNN</td>
<td>H<sub>N</sub>,N<sub>H</sub>, N<sub>H-1</sub>, N<sub>H+1</sub>  </td>
<td>H<sub>N</sub>,N<sub>H</sub>, N<sub>H-1</sub>, N<sub>H+1</sub>  </td>
<td>Amide to sequential nitrogens</td>
<td>Amide to sequential nitrogens</td>
Line 290: Line 370:
<ref name=Panchal/></td>
<ref name=Panchal/></td>
</tr>
</tr>
<tr><td>[[HSQC]]</td>
 
 
<tr><td>HSQC</td>
<td>H<sub>i</sub>, X<sub>i</sub></td>
<td>H<sub>i</sub>, X<sub>i</sub></td>
<td> Correlate heteroatom and attached proton</td>
<td> Correlate heteroatom and attached proton</td>
<td> very sensitive</td>
<td> very sensitive</td>
<td> John, et al.<ref name=John>{{cite journal | author = John, Plant & Hurd | title = Improved proton-detected heteronuclear correlation using gradient-enhanced Z and ZZ filters | journal = J. Magn. Reson., Series A | volume = A101 | pages = 113-117 | year = 1993 }}</ref>
<td> Bodenhausen & Ruben,<ref name=Ruben>{{cite journal | author = Bodenhausen, G. & Ruben, D.J. | title = Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy | journal = Chem. Phys. Lett. | volume = 69 | pages = 185-188 | year = 1980 }}</ref>John, et al.<ref name=John>{{cite journal | author = John, Plant & Hurd | title = Improved proton-detected heteronuclear correlation using gradient-enhanced Z and ZZ filters | journal = J. Magn. Reson., Series A | volume = A101 | pages = 113-117 | year = 1993 }}</ref> & Kay et al.<ref name=KayKeiffer>{{cite journal | author = Kay, Keiffer and Saarinen |title = Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity | journal = J. Am. Chem. Soc. | volume = 114 | pages = 10663-10665 | year = 1992 }}</ref></td>
& Kay et al.<ref name=KayKeiffer>{{cite journal | author = Kay, Keiffer and Saarinen |title = Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity | journal = J. Am. Chem. Soc. | volume = 114 | pages = 10663-10665 | year = 1992 }}</ref></td>
</tr>
 
<tr><td>INADEQUATE</td>
<td>incredible natural abundance double quantum transfer experiment</td>
<td> -</td>
<td> - </td>
<td> Bax, Freeman & Frenkiel<ref name=BaxFrenk>{{cite journal | author = Bax, A., Freeman, R. & Frenkiel, T.A. | title = An NMR technique for tracing out the carbon skeleton of an organic molecule | journal = J. Am. Chem. Soc. | volume = 103 | pages = 2102-2104 | year = 1981 }}</ref></td>
</tr>
 
 
<tr><td>INEPT</td>
<td>insensitive nuclei enhanced by polarization transfer</td>
<td> part of many modern NMR expts.</td>
<td> - </td>
<td> Morris & Freeman<ref name=Morris>{{cite journal | author = Morris, G.A. & Freeman, R. | title = Enhancement of nuclear magnetic resonance signals by polization transfer | journal = J. Am. Chem. Soc. | volume = 101 | pages = 760-762 | year = 1979 }}</ref></td>
</tr>
</tr>




<tr><td>[[LRCC]]</td>
 
<tr><td>LRCC</td>
<td>Methionine C<sub><math>\epsilon</math></sub>/H<sub><math>\epsilon</math></sub>---> C<sub><math>\beta</math></sub> and C<sub><math>\gamma</math></sub></td>
<td>Methionine C<sub><math>\epsilon</math></sub>/H<sub><math>\epsilon</math></sub>---> C<sub><math>\beta</math></sub> and C<sub><math>\gamma</math></sub></td>
<td> Assign Methionine methyls, chi3 angles</td>
<td> Assign Methionine methyls, chi3 angles</td>
Line 307: Line 404:




<tr><td>[[LRCH]]</td>
<tr><td>LRCH</td>
<td>Methionine C<sub><math>\epsilon</math></sub>/H<sub><math>\epsilon</math></sub>---> H<sub><math>\gamma</math></sub></td>
<td>Methionine C<sub><math>\epsilon</math></sub>/H<sub><math>\epsilon</math></sub>---> H<sub><math>\gamma</math></sub></td>
<td> Assign Methionine methyls, chi3 angles</td>
<td> Assign Methionine methyls, chi3 angles</td>
<td> high sensitivity</td>
<td> high sensitivity</td>
<td> Bax, Delaglio et al.<ref name=BaxDelaglio/></td>
<td> Bax, Delaglio et al.<ref name=BaxDelaglio/></td></tr>
 
 
<tr><td>MLEV</td>
<td> 1rst Decoupling scheme</td>
<td> removes J coupling </td>
<td> sensitive to phase imperfections </td>
<td> Levitt, Freeman & Frenkiel<ref name=mlev>{{cite journal | author = Levitt, M. H., Freeman, R. & Frenkiel, T. | title = Broadband decoupling in high-resolution NMR spectroscopy | journal = Adv. Magn. Reson. | volume = 11 | pages = 47 | year = 1983 }}</ref></td>
</tr>


<tr><td>NOESY</td>
<tr><td>NOESY</td>
Line 317: Line 422:
<td> <sup>1</sup>H-<sup>1</sup>H distance</td>
<td> <sup>1</sup>H-<sup>1</sup>H distance</td>
<td> structure determinations</td>
<td> structure determinations</td>
<td> Kumar, Ernst & Wuthrich
<td> Jeener et al.,<ref name=Jeener>{{cite journal | author = Jeener, J., Meier, B.H., Bachmann, P. & Ernst, R.R. | title = Investigation of exchange processes by two-dimensional NMR spectroscopy | journal = J. Chem. Phys. | volume = 71 | pages = 4546-4563 | year = 1979 }}</ref> Kumar, Ernst & Wuthrich<ref name=Kumar>{{cite journal | author = Kumar, A., Ernst, R.R. & Wuthrich, K.  | title = A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules | journal = Biochem. Biophys. Res. Commun. | volume = 95 | pages = 1-6 | year = 1980 }}</ref> and Macura & Ernst<ref name=Macura>{{cite journal | author = Macura, S. & Ernst, R.R. | title = Elucidiation of cross relaxation in liquids by two-dimensional NMR spectroscopy  | journal = Mol. Phys. | volume = 41 | pages = 95-117 | year = 1980}}</ref>
<ref name=Kumar>{{cite journal | author = Kumar, A., Ernst, R.R. & Wuthrich, K.  | title = A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules | journal = Biochem. Biophys. Res. Commun. | volume = 95 | pages = 1-6 | year = 1980 }}</ref>
<ref name=Macura>{{cite journal | author = Macura, S. & Ernst, R.R. | title = Elucidiation of cross relaxation in liquids by two-dimensional NMR spectroscopy  | journal = Mol. Phys. | volume = 41 | pages = 95-117 | year = 1980}}</ref>
</td>
</td>
</tr>
</tr>
Line 328: Line 431:
<td> <sup>1</sup>H-<sup>1</sup>H distance</td>
<td> <sup>1</sup>H-<sup>1</sup>H distance</td>
<td> rotating frame, works for small molecules</td>
<td> rotating frame, works for small molecules</td>
<td> Hwang & Shaka
<td> Bothner-By et al.<ref name=Bothner-By>{{cite journal | author = Bothner-By, A.A., Stephens, R.L., Lee, J., Warren, C.D. and Jeanloz, R.W. | title = Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame | journal = J. Am. Chem. Soc. | volume = 106 | pages = 811-813 | year = 1984 }}</ref> and Hwang & Shaka<ref name=HwangShaka1>{{cite journal | author = Hwang, T.L. & Shaka, A.J.  | title = Cross relaxation without TOCSY: Transverse rotating-frame Overhauser effect spectroscopy | journal = J. Am. Chem. Soc. | volume = 114 | pages = 3157-3159 | year = 1992 }}</ref><ref name=HwangShaka2>{{cite journal | author = Hwang, T.L. & Shaka, A.J.  | title = Reliable two-dimensional rotating-frame cross-relaxation measurements in coupled spin systems | journal = J. Magn. Reson. Series B | volume = B102 | pages = 155-165 | year = 1993 }}</ref>
<ref name=HwangShaka1>{{cite journal | author = Hwang, T.L. & Shaka, A.J.  | title = Cross relaxation without TOCSY: Transverse rotating-frame Overhauser effect spectroscopy | journal = J. Am. Chem. Soc. | volume = 114 | pages = 3157-3159 | year = 1992 }}</ref>
<ref name=HwangShaka2>{{cite journal | author = Hwang, T.L. & Shaka, A.J.  | title = Reliable two-dimensional rotating-frame cross-relaxation measurements in coupled spin systems | journal = J. Magn. Reson. Series B | volume = B102 | pages = 155-165 | year = 1993 }}</ref>
</td>
</td>
</tr>
</tr>


 
<tr><td>TOCSY</td>
<tr><td>[[TOCSY]]</td>
<td>H<sub>i</sub>----> H<sub><math>\chi</math></sub> </td>
<td>H<sub>i</sub>----> H<sub><math>\chi</math></sub> </td>
<td>Assign entire H1 spin systems</td>
<td>Assign entire H1 spin systems</td>
<td> signal overlap </td>
<td> signal overlap </td>
<td> Bax & Davis
<td> Braunschweiler & Ernst, <ref name=Braunschweiler>{{cite journal | author = Braunschweiler, L. & Ernst R.R. | title = Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy  | journal = J. Magn. Reson. | volume = 53 | pages = 521-528 | year = 1983 }}</ref> and Bax & Davis<ref name=BaxDavis>{{cite journal | author = Bax, A. and Davis, D. | title = MLEV-17 based two-dimensional homonuclear megnetization transfer spectroscopy | journal = J. Magn. Reson. | volume = 65 | pages = 355-360 | year = 1985 }}</ref></td>
<ref name=BaxDavis>{{cite journal | author = Bax, A. and Davis, D. | title = MLEV-17 based two-dimensional homonuclear megnetization transfer spectroscopy | journal = J. Magn. Reson. | volume = 65 | pages = 355-360 | year = 1985 }}</ref></td>
</tr>
 
<tr><td>WALTZ</td>
<td> Decoupling scheme</td>
<td>  </td>
<td> weak on the edges </td>
<td> A.J. Shaka et al. <ref name=Shaka1>{{cite journal | author = Shaka, A.J., Keeler, J., Frenkiel, T. & Freeman, R. | title = An improved sequence for broadband decoupling: WALTZ 16 | journal = J. Magn. Reson. | volume = 52 | pages = 335 | year = 1983 }}</ref><sup>,</sup><ref name=Shaka2>{{cite journal | author = Shaka, A.J., Keeler, J. & Freeman, R. | title = Evaluation of a new broadband decoupling sequence: WALTZ-16 | journal = J. Magn. Reson. | volume = 53 | pages = 313 | year = 1983 }}</ref></td>
</tr>
</tr>


<tr><td>[[WATERGATE]]</td>
 
<tr><td>WATERGATE</td>
<td> Protons </td>
<td> Protons </td>
<td>Solvent suppression</td>
<td>Solvent suppression</td>
Line 352: Line 458:
</tr>
</tr>


<tr><td>WURST</td>
<td> Decoupling scheme</td>
<td>  </td>
<td>  </td>
<td>See Kupce & Freeman<ref name=kupce2>{{cite journal | author = Kupce, E. & Freeman, R. | title = Optimized Adiabatic Pulses for Wideband Spin Inversion | journal = J. Magn. Reson. Series A | volume = 118| pages = 299 | year = 1996 }}</ref> and references therein </td>
</tr>
</table>
===NMR experiments - Magnetic resonance imaging (MRI) ===
<table border="1" cellpadding="2" cellspacing="0" bordercolor="#CCCCCC" bgcolor="#FFFFFF">
<tr><th>MRI Experiment Name</th><th>Full Name </th><th>Common Use</th><th>Reference(s)</th>
</tr>
<tr><td>BOLD (BOLD-fMRI)</td><td>Blood Level Oxygen Dependent </td><td>a technique more than a sequence</td><td>Turner et al. <ref name=Turner>{{cite journal | author = Turner R., Le Bihan, D., Mooner, C.T., Despres, D. and Frank, J. | title = Echo-planar time course MRI of cat brain oxygenation changes | journal = Magn. Reson. Med. | volume = 22 | pages = 159-166 | year = 1991 }}</ref></td>
</tr>
<tr><td>CSSI</td><td>Chemical Shift Selective Imaging (or MRS) </td><td>Selective Excitation</td><td></td>
</tr>
<tr><td>DIFRAD</td><td>Diffusion-weighted Radial Acquisition of Data </td><td></td><td>
<ref name=difrad>{{cite journal | title = High-resolution diffusion imaging with DIFRAD-FSE (diffusion-weighted radial acquisition of data with fast spin-echo) MRI. | journal = Magn. Reson. Med. | volume = 42 | pages = 11-18 | year = 1999 }}</ref></td> </tr>
<tr><td>EPI</td><td> Echo Planar Imaging </td><td>functional brain imaging</td><td></td>
</tr>
<tr><td>FLASH</td><td>Fast Low Angle Shot Imaging </td><td>fast functional imaging</td><td></td>
</tr>
<tr><td>GRE</td><td>Gradient Echo Imaging </td><td>improved MRI</td><td></td>
</tr>


<tr><td>Spin Echo</td><td>or Spin Warp </td><td>Basic MRI</td><td></td>
</tr>
<tr><td>STEAM</td><td>Stimulated Echo Imaging </td><td> - </td><td></td>
</tr>




</table>
</table>


===NMR experiments - MRI ===
===NMR experiments - solid-state ===
Many solid state experiments are similar to the liquid state experiments, but the sample is spun off axis at the "magic angle". Thus, many of the experiments listed under the solution NMR section can be done in the solid, and have names like MAS-HSQC, MAS-NOESY and so on.
 
<table border="1" cellpadding="2" cellspacing="0" bordercolor="#CCCCCC" bgcolor="#FFFFFF">
<tr><th>Solid State Experiment Name</th><th>Full Name </th><th>Common Use</th><th>Reference(s)</th>
</tr>
 
<tr><td>CRAMPS</td><td>Combined Rotation And Multiple Pulse Spectroscopy</td><td> - </td><td></td>
</tr>
 
<tr><td>HRMAS</td><td>High Resolution Magic Angle Spinning</td><td> a part of many experiments </td><td></td></tr>
 
 
<tr><td>MAS</td><td>Magic Angle Spinning</td><td> a part of many experiments </td><td></td></tr>
 
<tr><td>REDOR</td><td>Rotational Echo Double Resonance</td><td> - </td><td></td></tr>
 
<tr><td>XPOLAR</td><td>Cross Polarization</td><td>  </td><td>Pines, Gibby & Waugh<ref name=xpolar>{{cite journal | author = Pines, A., Gibby, M.G. & Waugh, J.S. | title = Proton-enhanced NMR in dilute spins in solids | journal = J. Chem. Phys. | volume = 59 | pages = 569 | year = 1973 }}</ref></td></tr>
 
</table>
 
 
 
==Further reading==
* "NMR of Proteins and Nucleic Acids", Kurt Wuthrich, John Wiley & Sons, New York, N.Y., 1983.
* "Modern NMR Spectroscopy: A Guide for Chemists", Jeremy K.M. Saunders and Brian K. Hunter, Oxford University Press, Oxford, 1987.
* "Principles of Nuclear Magnetic Resonance in One and Two Dimensions", Richard R. Ernst, Geoffrey Bodenhausen and Alexander Wokaun, Clarendon Press, Oxford, 1987. (Heavy on Quantum mechanics, not for the faint of heart!)
* "The Theory of Decoupling", J. S. Waugh, J. Magn. Reson. 1982, volume 50, page 30.


===NMR experiments - solid-state ===


==References==
==References==
Line 365: Line 539:
<references/>
<references/>
</div>
</div>
[[Category:CZ Live]]
[[Category:Biology Workgroup]]
[[Category:Chemistry Workgroup]]
[[Category:Physics Workgroup]]

Latest revision as of 04:54, 21 March 2024


Nuclear Magnetic Resonance experiments can have multiple variations added, such as form of solvent suppression, sensitivity enhancement, form of inversion or soft pulses, decoupling schemes and so on. This list refers to the basic form of the experiment and references, in general, but not always, are made to the earliest published form of the experiment.

These experiments have been separated into those generally used for solution Nuclear Magnetic Resonance (NMR) spectroscopy, magnetic resonance imaging spectroscopy (MRI) and solid-state NMR spectroscopy.

Atom notation key

Atom NameDescription
Calpha carbon of current amino acid
Calpha carbon of the previous amino acid
Cbeta carbon of current amino acid
Cbeta carbon of the previous amino acid
COcarbonyl carbon of the current amino acid
CO-1carbonyl carbon of the previous amino acid
Cany carbon of the previous amino acid
Halpha proton of current amino acid
Halpha proton of the previous amino acid
HNamide proton
NHamide nitrogen
Hany proton of the current amino acid
Hany proton of the previous amino acid

NMR experiments - solution


NMR Experiment NameAtoms Observed Common UseWeaknessesReference(s)
APT 13C separate C, CH, CH2 and CH3 carbon detection Patt & Schoolery [1]
BEST Decoupling scheme Excellent Decoupling scheme none Zhang & Gorenstein[2]
BIRD Decoupling scheme BIlinear Rotation Decoupling - Garbow, Weitekamp & Pines[3]
CBCA(CO)NH HN, NH, C, C Protein NMR assignments Hn exchange Grzesiek & Bax [4]
CBCANH HN, NH, C, C, C, C Protein NMR assignments Hn exchange Grzesiek & Bax [5]
CHIRP Adiabatic Decoupling scheme linear for wide sweep width See Kupce & Freeman[6] and references therein
COSY Hi, Hi-1, Hi+1 Correlate neighboring protons signal overlap Aue et al[7] and Bax and Freeman[8]
COLOC 1H & 13C COrrleation via LOng-range Coupling - Kessler et al.[9]
DEPT (13C-DEPT) 13C Differentiate CH, CH2 and CH3 don't observe quaternary 13C Bendall, Doddrell & Pegg [10]
DIPSI Decoupling/Spin-lock scheme decoupling or TOCSY Shaka, Lee & Pines [11]
Double WURST Decoupling scheme Removes Bloch-Seigert Shifts Zhang & Gorenstein [12]
DQF-COSY see COSY Reduces diagonal peaks - Piantini, Sorensen & Ernst [13]
GARP Decoupling scheme Better than MLEV & WALTZ worse than adiabatic (WURST) Shaka, Barker & Freeman [14]
HACAHB H, C, H Selective COSY water signal overlaps some H Grzesiek et al. [15]
HBHA(CO)NH HN, NH, H, H Previous alpha/beta protons Hn exchange Grzesiek & Bax [16]
HBCBCACOCAHA H, C, C, CO Protein NMR assignments 13C relaxation Lewis Kay [17]
HBCBCACONNH H, C, C, NH+1, HN+1 Protein NMR Assignments Hn exchange Grzesiek and Bax [4]
(HB)CB(CGCD)HD C and H of aromatic residues Protein NMR Assignments 13C relaxation Yamazaki, Forman-Kay & Kay [18]
(HB)CB(CGCDCE)HE C and H of aromatic residues Protein NMR Assignments 13C relaxation Yamazaki, Forman-Kay & Kay [18]
(HCA)CO(CA)NH HN, NH, CO, CO-1 Protein NMR assignments Hn exchange Lohr and Ruterjans[19]
HCACOCAN CO, C, H, HN, HN+1, NH, NH+1 Protein NMR assignments Hn exchange Lohr and Ruterjans [19]
HCAN H, C, NH, NH+1 Protein NMR Assignments water signal overlap Powers et al. [20]
HCCH_TOCSY (Hi-Ci) ---> H Assign entire spin systems signal overlap, 13C relaxation Clore & Gronenborn [21]
H(CCO)NH HN, NH, H Proteins: correlate proton spin system to next amide group Hn exchange Grzesiek, Anglister & Bax [22]
(H)C(CO)NH HN, NH, Cx-1 Proteins: correlate carbon spin system to next amide group Hn exchange Grzesiek, Anglister & Bax [22]
HETCOR Hi, Ci similar to HSQC carbon detection -
HMBC Hi, Cj,k,l,m long-range C-H correlations, aromatic ring assignments low signal, weak J couplings used Bax & Summers [23]
HMQC Hi, Ci heteronuclear multiple quantum coherence - L. Mueller[24]
HNCA HN, NH, C, C Sequential alpha carbons weak Ca-1, Hn exchange Kay, Ikura, Tschudin & Bax [25]
HNCACB HN, NH, C, C, C, C Sequential alpha/beta carbons weak C,C signals, Hn exchange Wittekind & Mueller [26]
HN(CA)COHN, NH, CO, CO-1 Sequential carbonyl carbons weak CO-1 signals, Hn exchange Yamazaki, Lee, et al. [27]
HN(CA)HA HN, NH, H, H Sequential alpha protons H overlap and water signals Kay et al. [28]
HN(C)N HN,NH, NH-1 Amide to previous nitrogen Hn exchange Panchal, Bhavesh & Hosur [29]
HN(CA)NNH NH, HN, NH-1, NH+1 Sequential Protein amide groups 13C relaxation, HN exchange Weisemann, Ruterjans & Bermel [30]
H(NCA)NNH NH, HN, HN-1,HN+1 Sequential Protein amide groups weak CO-1 signals, Hn exchange Weisemann, Ruterjans & Bermel[30]
HNCO HN, NH, CO-1 Carbonyl carbon assignments Hn exchange Ikura, Kay & Bax [31]
HN(CO)CA HN, NH, C Assign previous alpha carbon Hn exchange Yamazaki, Lee, et al.[27]
HN(CO)CACB HN, NH, C, C Previous alpha/beta carbons Hn exchange -
HN(COCA)CB HN, NH, C Previous beta carbons Hn exchange Wittekind & Mueller [26]
(HN)CO(CO)NH HN, NH, CO, CO-1 Previous alpha/beta carbons C relaxation Bax & Grzesiek[32]
HN(CO)HAHN, NH, HPrevious alpha proton Hn exchange -
HN(CO)HB HN, NH, H CO-H coupling Hn exchange Grzesiek, Ikura et al. [33]
HNHA HN, NH, H alpha protons & -backbone angles water peak Vuister & Bax [34]
HNHB HN, NH, H, H (N-H J-coupling) Hn exchange Archer et al. [35]
HNHHN(i,i-1,i+1), NH(i,i-1,i+1)Sequential beta protons & backbone anglesweak Ca/Cb-1 signals, Hn exchange -
HNN HN,NH, NH-1, NH+1 Amide to sequential nitrogens Hn exchange Panchal, Bhavesh & Hosur [29]
HSQC Hi, Xi Correlate heteroatom and attached proton very sensitive Bodenhausen & Ruben,[36]John, et al.[37] & Kay et al.[38]
INADEQUATE incredible natural abundance double quantum transfer experiment - - Bax, Freeman & Frenkiel[39]
INEPT insensitive nuclei enhanced by polarization transfer part of many modern NMR expts. - Morris & Freeman[40]
LRCC Methionine C/H---> C and C Assign Methionine methyls, chi3 angles high sensitivity Bax, Delaglio et al.[41]
LRCH Methionine C/H---> H Assign Methionine methyls, chi3 angles high sensitivity Bax, Delaglio et al.[41]
MLEV 1rst Decoupling scheme removes J coupling sensitive to phase imperfections Levitt, Freeman & Frenkiel[42]
NOESY Hi, Hx 1H-1H distance structure determinations Jeener et al.,[43] Kumar, Ernst & Wuthrich[44] and Macura & Ernst[45]
ROESY Hi, Hx 1H-1H distance rotating frame, works for small molecules Bothner-By et al.[46] and Hwang & Shaka[47][48]
TOCSY Hi----> H Assign entire H1 spin systems signal overlap Braunschweiler & Ernst, [49] and Bax & Davis[50]
WALTZ Decoupling scheme weak on the edges A.J. Shaka et al. [51],[52]
WATERGATE Protons Solvent suppression - Piotto, Saudek & Sklenar [53]
WURST Decoupling scheme See Kupce & Freeman[54] and references therein

NMR experiments - Magnetic resonance imaging (MRI)

MRI Experiment NameFull Name Common UseReference(s)
BOLD (BOLD-fMRI)Blood Level Oxygen Dependent a technique more than a sequenceTurner et al. [55]
CSSIChemical Shift Selective Imaging (or MRS) Selective Excitation
DIFRADDiffusion-weighted Radial Acquisition of Data [56]
EPI Echo Planar Imaging functional brain imaging
FLASHFast Low Angle Shot Imaging fast functional imaging
GREGradient Echo Imaging improved MRI
Spin Echoor Spin Warp Basic MRI
STEAMStimulated Echo Imaging -

NMR experiments - solid-state

Many solid state experiments are similar to the liquid state experiments, but the sample is spun off axis at the "magic angle". Thus, many of the experiments listed under the solution NMR section can be done in the solid, and have names like MAS-HSQC, MAS-NOESY and so on.


Solid State Experiment NameFull Name Common UseReference(s)
CRAMPSCombined Rotation And Multiple Pulse Spectroscopy -
HRMASHigh Resolution Magic Angle Spinning a part of many experiments
MASMagic Angle Spinning a part of many experiments
REDORRotational Echo Double Resonance -
XPOLARCross Polarization Pines, Gibby & Waugh[57]


Further reading

  • "NMR of Proteins and Nucleic Acids", Kurt Wuthrich, John Wiley & Sons, New York, N.Y., 1983.
  • "Modern NMR Spectroscopy: A Guide for Chemists", Jeremy K.M. Saunders and Brian K. Hunter, Oxford University Press, Oxford, 1987.
  • "Principles of Nuclear Magnetic Resonance in One and Two Dimensions", Richard R. Ernst, Geoffrey Bodenhausen and Alexander Wokaun, Clarendon Press, Oxford, 1987. (Heavy on Quantum mechanics, not for the faint of heart!)
  • "The Theory of Decoupling", J. S. Waugh, J. Magn. Reson. 1982, volume 50, page 30.


References

  1. Patt, S.L. & Schoolery, J.N. (1982). "Attached Proton Test for Carbon-13 NMR". J. Magn. Reson. 46: 535-539.
  2. Zhang, S. & Gorenstein, D.G. (1999). "BEST Homonuclear Adiabatic Decoupling for 13C- and 15N-Double-Labeled Proteins". J. Magn. Reson. 138: 281-287.
  3. Garbow, J.R., Weitekamp, D.P. & Pines, A. (1982). "Bilinear Rotation Decoupling of Homonuclear Scalar Interactions". Chem. Phys. Lett. 93: 504-508.
  4. 4.0 4.1 Grzesiek, S. & Bax, A. (1992). "Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR". J. Am. Chem. Soc. 114: 6291-6293.
  5. Grzesiek, S. & Bax, A. (1992). "An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins". J. Magn. Reson. 99: 201-207.
  6. Kupce, E. & Freeman, R. (1996). "Optimized adiabatic pulses for wideband spin inversion". J. Magn. Reson. Series A 118: 299-303.
  7. Aue, W.P., Bartholdi, E. and Ernst, R.R. (1975). "Two-dimensional spectroscopy. Application to nuclear magnetic resonance". J. Chem. Phys. 64: 2229-2246.
  8. Bax, A. & Freeman, R. (1981). "Investigation of complex networks of spin-spin coupling by two-dimensional NMR". J. Magn. Reson. 44: 542-561.
  9. Kessler, H., Griesinger, C., Zarbock, J. and Loosli, H.R. (1984). "Assignment of carbonyl carbons and sequence analysis in peptides by heteronuclear shift correlation via small coupling constants with broadband decoupling in t1 (COLOC)". J. Magn. Reson. 57: 331-336.
  10. Bendall, M.R., Doddrell, D.D. & Pegg, D.T. (1981). "Editing of carbon-13 NMR spectra. 1. A pulse sequence for the generation of subspectra". J. Am. Chem. Soc. 103: 4603-4605.
  11. Shaka, A.J., Lee, C.J. & Pines, A. (1988). "Iterative Schemes for Bilinear Operators - Application to Spin Decoupling". J. Magn. Reson. 77: 274.
  12. Zhang, S. & Gorenstein, D.G. (1996). "“Double-WURST” Decoupling for 15N- and 13C-Double-Labeled Proteins in a High Magnetic Field". J. Magn. Reson. Series A 123: 181-187.
  13. Piantini, U., Sorensen, O.W. & Ernst, R.R. (1982). "Multiple quantum filters for elucidating NMR coupling networks". J. Am. Chem. Soc. 104: 6800-6801.
  14. Shaka, A.J., Barker, P.B. & Freeman, R. (1985). "Computer-optimized decoupling scheme for wideband applications and low-level operation". J. Magn. Reson. 64: 574.
  15. Grzesiek, S., Kuboniwa, H., Hinck, A.P. & Bax, A. (1995). "Multiple-Quantum Line Narrowing for Measurement of H-H J Couplings in Isotopically Enriched Proteins". J. Am. Chem. Soc. 117: 5312-5315.
  16. Grzesiek, S. & Bax, A. (1993). "Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins". J. Biomol. NMR 3: 185-204.
  17. Kay, L. E. (1993). "Pulsed-field gradient-enhanced three-dimensional NMR experiment for correlating 13C/, 13C', and 1H chemical shifts in uniformly 13C-labeled proteins dissolved in water". J. Am. Chem. Soc. 115: 2055-2057.
  18. 18.0 18.1 Yamazaki, T., Forman-Kay, J. D. & Kay, L. E. (1994). "Two-dimensional NMR experiments for correlating 13C and 1H/ chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings". J. Am. Chem. Soc. 115: 11054-11055.
  19. 19.0 19.1 Lohr, F. and Ruterjans, H. (1995). "A new triple-resonance experiment for the sequential assignment of backbone resonances in proteins". J. Biomol. NMR 6: 189-197.
  20. Powers, R., Gronenborn, A.M., Clore, G.M. and Bax, A. (1991). "Three-dimensional Triple-Resonance NMR of 13C/15N-Enriched Proteins Using Constant-Time Evolution". J. Magn. Reson. 94: 209-213.
  21. Clore, G. M. & Gronenborn, A. M. (1994). "Multidimensional heteronuclear nuclear magnetic resonance of proteins". Meth. Enzymol. 239: 249-363.
  22. 22.0 22.1 Grzesiek, S., Anglister, J. & Bax, A. (1993). "Correlation of Backbone Amide and Aliphatic Side-Chain Resonances in 13C/15N-enriched Proteins by Isotopic Mixing of 13C Magnetization". J. Magn. Reson. Series B B101: 114-119.
  23. Bax, A. & Summers, M.F. (1986). "Proton and Carbon-13 assigments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR". J. Am. Chem. Soc. 108: 2093-2094.
  24. L. Mueller (1979). "Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence". J. Am. Chem. Soc. 101: 4481-4484.
  25. Kay, L. E., Ikura, M., Tschudin, R. & Bax, A. (1990). "Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins". J. Magn. Reson. 89: 296.
  26. 26.0 26.1 Wittekind, M. & Mueller, L. (1993). "HNCACB, a High-Sensitivy 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha- and Beta-Carbon Resonances in Proteins". J. Magn. Reson., Series B. B101: 201-205.
  27. 27.0 27.1 Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. and Kay, L.E. (1994). "A Suite of Triple Resonance NMR Experiments for the Backbone Assignment of 15N, 13C, 2H Labeled Proteins with High Sensitivity". J. Am. Chem. Soc. 116: 11655-11666.
  28. Kay, L. E., Wittikind, M., McCoy, M. A., Friedrichs, M. S. and Mueller, L. (1992). "4D NMR Triple-Resonance Experiments for Assignment of Protein Backbone Nuclei Using Shared Constant-Time Evolution Periods". J. Magn. Reson. 98: 443-450.
  29. 29.0 29.1 Panchal, SC, Bhavesh, NS & Hosur, RV (2001). "Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins". J. Biomol. NMR 20: 135-147.
  30. 30.0 30.1 Weisemann, R., Ruterjans, H. & Bermel, W. (1993). "3d Triple-resonance NMR techniques for the sequential assignment of NH and 15N resonances in 15N- and 13C-labelled proteins". J. Biomol. NMR 3: 113-120.
  31. Ikura, M., Kay, L. E. and Bax, A. (1990). "A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin". Biochemistry 29: 4659-4667.
  32. Grzesiek, S. & Bax, A. (1997). "A three-dimensional NMR experiment with improved sensitivity for carbonyl-carbonyl J correlation in proteins". J. Biomol. NMR 9: 207-211.
  33. Grzesiek, S., Ikura, M., Clore, G.M., Gronenborn, A.M. & Bax, A. (1992). "A 3D Triple-Resonance Technique for Qualitative Measurement of Carbonyl-H J Couplings in Isotopically Enriched Proteins". J. Magn. Reson. 96: 215-221.
  34. Vuister, G.W. & Bax, A. (1993). "Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins". J. Am. Chem. Soc. 115: 7772-7777.
  35. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. (1991). "An Alternative 3D NMR Technique for Correlating Backbone 15N with Side Chain H Resonances in Larger Proteins". J. Magn. Reson. 95: 636-641.
  36. Bodenhausen, G. & Ruben, D.J. (1980). "Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy". Chem. Phys. Lett. 69: 185-188.
  37. John, Plant & Hurd (1993). "Improved proton-detected heteronuclear correlation using gradient-enhanced Z and ZZ filters". J. Magn. Reson., Series A A101: 113-117.
  38. Kay, Keiffer and Saarinen (1992). "Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity". J. Am. Chem. Soc. 114: 10663-10665.
  39. Bax, A., Freeman, R. & Frenkiel, T.A. (1981). "An NMR technique for tracing out the carbon skeleton of an organic molecule". J. Am. Chem. Soc. 103: 2102-2104.
  40. Morris, G.A. & Freeman, R. (1979). "Enhancement of nuclear magnetic resonance signals by polization transfer". J. Am. Chem. Soc. 101: 760-762.
  41. 41.0 41.1 Bax, A., Delaglio, F., Grzesiek, S. and Vuister, G.W. (1994). "Resonance assignment of methionine methyl groups and 3 angular information from long-range proton-carbon and carbon-carbon J correlation in a calmodulin-peptide complex". J. Biomol. NMR 4: 787-797.
  42. Levitt, M. H., Freeman, R. & Frenkiel, T. (1983). "Broadband decoupling in high-resolution NMR spectroscopy". Adv. Magn. Reson. 11: 47.
  43. Jeener, J., Meier, B.H., Bachmann, P. & Ernst, R.R. (1979). "Investigation of exchange processes by two-dimensional NMR spectroscopy". J. Chem. Phys. 71: 4546-4563.
  44. Kumar, A., Ernst, R.R. & Wuthrich, K. (1980). "A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules". Biochem. Biophys. Res. Commun. 95: 1-6.
  45. Macura, S. & Ernst, R.R. (1980). "Elucidiation of cross relaxation in liquids by two-dimensional NMR spectroscopy". Mol. Phys. 41: 95-117.
  46. Bothner-By, A.A., Stephens, R.L., Lee, J., Warren, C.D. and Jeanloz, R.W. (1984). "Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame". J. Am. Chem. Soc. 106: 811-813.
  47. Hwang, T.L. & Shaka, A.J. (1992). "Cross relaxation without TOCSY: Transverse rotating-frame Overhauser effect spectroscopy". J. Am. Chem. Soc. 114: 3157-3159.
  48. Hwang, T.L. & Shaka, A.J. (1993). "Reliable two-dimensional rotating-frame cross-relaxation measurements in coupled spin systems". J. Magn. Reson. Series B B102: 155-165.
  49. Braunschweiler, L. & Ernst R.R. (1983). "Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy". J. Magn. Reson. 53: 521-528.
  50. Bax, A. and Davis, D. (1985). "MLEV-17 based two-dimensional homonuclear megnetization transfer spectroscopy". J. Magn. Reson. 65: 355-360.
  51. Shaka, A.J., Keeler, J., Frenkiel, T. & Freeman, R. (1983). "An improved sequence for broadband decoupling: WALTZ 16". J. Magn. Reson. 52: 335.
  52. Shaka, A.J., Keeler, J. & Freeman, R. (1983). "Evaluation of a new broadband decoupling sequence: WALTZ-16". J. Magn. Reson. 53: 313.
  53. Piotto, M., Saudek, V. and Sklenar, V. (1992). "Gradient-tailored Excitation for Single-quantum NMR Spectroscopy of Aqueous Solutions". J. Biomol. NMR 2: 661.
  54. Kupce, E. & Freeman, R. (1996). "Optimized Adiabatic Pulses for Wideband Spin Inversion". J. Magn. Reson. Series A 118: 299.
  55. Turner R., Le Bihan, D., Mooner, C.T., Despres, D. and Frank, J. (1991). "Echo-planar time course MRI of cat brain oxygenation changes". Magn. Reson. Med. 22: 159-166.
  56. (1999) "High-resolution diffusion imaging with DIFRAD-FSE (diffusion-weighted radial acquisition of data with fast spin-echo) MRI.". Magn. Reson. Med. 42: 11-18.
  57. Pines, A., Gibby, M.G. & Waugh, J.S. (1973). "Proton-enhanced NMR in dilute spins in solids". J. Chem. Phys. 59: 569.