Markov chain

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

A Markov chain is a Markov process with a discrete time parameter [1]. The Markov chain is a useful way to model systems with no long-term memory of previous states. That is, the state of the system at time is solely a function of the state , and not of any previous states [2].

A Formal Model

The influence of the values of on the distribution of can be formally modelled as:

Eq. 1

In this model, is any desired subset of the series . These indexes commonly represent the time component, and the range of is the Markov chain's state space [1].

Probability Density

The Markov chain can also be specified using a series of probabilities. If the initial probability of the state is , then the transition probability for state occurring at time can be expressed as:

Eq. 2

In words, this states that the probability of the system entering state at time is a function of the summed products of the initial probability density and the probability of state given state [2].

Invariant Distributions

In many cases, the density will approach a limit that is uniquely determined by (and not ). This limiting distribution is referred to as the invariant (or stationary) distribution over the states of the Markov chain. When such a distribution is reached, it persists forever[2].

References

  1. 1.0 1.1 Neal, R.M. (1993) Probabilistic Inference using Markov Chain Monte Carlo Methods. Technical Report TR-931. Department of Computer Science, University of Toronto http://www.cs.toronto.edu/~radford/review.abstract.html
  2. 2.0 2.1 2.2 Peter M. Lee (2004) Bayesian Statistics: An Introduction. New York: Hodder Arnold. 368 p.