Limit point

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In topology, a limit point of a subset S of a topological space X is a point x that cannot be separated from S.

Definition

Formally, x is a limit point of S if every neighbourhood of x contains a point of S other than x itself.

Metric space

In a metric space (X,d), a limit point of a set S may be defined as a point x such that for all ε > 0 there exists a point y in S such that

This agrees with the topological definition given above.

Properties

  • A subset S is closed if and only if it contains all its limit points.
  • The closure of a set S is the union of S with its limit points.

Derived set

The derived set of S is the set of all limit points of S. A point of S which is not a limit point is an isolated point of S. A set with no isolated points is dense-in-itself. A set is perfect if it is closed and dense-in-itself; equivalently a perfect set is equal to its derived set.

Related concepts

Limit point of a sequence

A limit point of a sequence (an) in a topological space X is a point x such that every neighbourhood U of x contains all points of the sequence beyond some term n(U). A limit point of the sequence (an) need not be a limit point of the set {an}.

Adherent point

A point x is an adherent point or contact point of a set S if every neighbourhood of x contains a point of S (not necessarily distinct from x).

ω-Accumulation point

A point x is an ω-accumulation point of a set S if every neighbourhood of x contains infinitely many points of S.

Condensation point

A point x is a condensation point of a set S if every neighbourhood of x contains uncountably many points of S.

References