Finite field

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

A finite field is a field with a finite number of elements; e,g, the fields (with the addition and multiplication induced from the same operations on the integers). For any primes number p, and natural number n, there exists a unique finite field with pn elements; this field is denoted by or (where GF stands for "Galois field").

Proofs of basic properties:

Finite characteristic:

Let F be a finite field, then by the piegonhole principle there are two different natural numbers number n,m such that . hence there is some minimal natural number N such that . Since F is a field, it has no 0 divisors, and hence N is prime.

Existence and uniqueness of Fp

To begin with it is follows by inspection that is a field. Furthermore, given any other field F' with p elements, one immediately get an isomorphism by mapping .

Existence - general case

working over , let . Let F be the splitting field of f over . Note that f' = -1, and hence the gcd of f,f' is 1, and all the roots of f in F are distinct. Furthermore, note that the set of roots of f is closed under addition and multiplication; hence F is simply the set of roots of f.

Uniqueness - general case

Let F be a finite field of characteristic p, then it contains ; i.e. it contains a copy of . Hence, F is a vector field of finite dimension over . Moreover since the non 0 elements of F form a group, they are all roots of the polynomial ; hence the elements of F are all roots of f.

The Frobenius map

Let F be a field of characteritic p, then the map is the generator of the Galois group .