Compact space: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Jitse Niesen
(define open cover, formatting, move "see also" to subpage)
imported>Richard Pinch
m (Compact set moved to Compact space: title refers to topological space, see talk page)
(No difference)

Revision as of 14:33, 31 October 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a compact set is a set for which every covering of that set by a collection of open sets has a finite subcovering. If the set is a subset of a metric space then compactness is equivalent to the set being complete and totally bounded or, equivalently, that every sequence in the set has a convergent subsequence. For the special case that the set is a subset of a finite dimensional normed space, such as the Euclidean spaces, then compactness is equivalent to that set being closed and bounded.

Cover and subcover of a set

Let A be a subset of a set X. A cover for A is any collection of subsets of X whose union contains A. In other words, a cover is of the form

where is an arbitrary index set, and satisfies

An open cover is a cover in which all of the sets are open. Finally, a subcover of is a subset of the form

with such that

Formal definition of compact set

A subset A of a set X is said to be compact if every open cover of A has a finite subcover, that is, a subcover which contains at most a finite number of subsets of X (in other words, the index set is finite).