CZ:Featured article/Current

From Citizendium
< CZ:Featured article
Revision as of 10:19, 6 July 2012 by imported>Chunbum Park
Jump to navigation Jump to search

Higgs boson


The Higgs boson is a massive spin-0 elementary particle in the Standard Model of particle physics that plays a key role in explaining the mass of other elementary particles. The experimental discovery of a particle consistent with the Higgs was announced in a seminar on July 4, 2012.[1][2] This particle was first proposed by Professor Peter Higgs of Edinburgh University in 1964 as a means to explain the origin of the masses of the elementary particles by the introduction of an fundamental scalar field. This gives all the fundamental particles mass via a process of spontaneous symmetry breaking called the Higgs Mechanism. The Higgs boson was popularised as the "God particle" by the Nobel Prize-winning physicist Leon M. Lederman in his 1993 popular science book The God Particle: If the Universe Is the Answer, What is the Question? co-written with science writer Dick Teresi.[3][4]

The Higgs mechanism

In the Standard Model, the theory that explains experimental observations of elementary particles, the QCD vacuum has less symmetry than the force laws governing fundamental interactions. This reduced symmetry situation is not unique, and is found in many systems, among them the ground state of ferroelectrics and of superconductors. In these systems, the greater symmetry of nature is exhibited "on average" by a mosaic of sub-domains individually with reduced symmetry, but statistically exhibiting the greater symmetry of the interactions when all the domains are viewed as an ensemble.

In the case of superconductors, the photons, whose exchange mediates the electromagnetic interactions between Cooper pairs, cannot propagate freely because of the presence everywhere of electric charge. In a similar fashion, the Higgs mechanism predicts the symmetry of electroweak interactions is broken by interactions among Higgs bosons in the vacuum, leading (among other things) to non-zero masses for the W± and Z weak bosons. In fact, the properties of mass and electric charge stem from interaction with the reduced symmetry vacuum, and are not a result of direct interactions between particles.[5]

.... (read more)