CZ:Featured article/Current

From Citizendium
< CZ:Featured article
Revision as of 23:01, 10 September 2011 by imported>Chunbum Park
Jump to navigation Jump to search

The Dirac delta function is a function introduced in 1930 by Paul Adrien Maurice Dirac in his seminal book on quantum mechanics. A physical model that visualizes a delta function is a mass distribution of finite total mass M—the integral over the mass distribution. When the distribution becomes smaller and smaller, while M is constant, the mass distribution shrinks to a point mass, which by definition has zero extent and yet has a finite-valued integral equal to total mass M. In the limit of a point mass the distribution becomes a Dirac delta function.

Heuristically, the Dirac delta function can be seen as an extension of the Kronecker delta from integral indices (elements of ) to real indices (elements of ). Note that the Kronecker delta acts as a "filter" in a summation:

In analogy, the Dirac delta function δ(xa) is defined by (replace i by x and the summation over i by an integration over x),

The Dirac delta function is not an ordinary well-behaved map , but a distribution, also known as an improper or generalized function. Physicists express its special character by stating that the Dirac delta function makes only sense as a factor in an integrand ("under the integral"). Mathematicians say that the delta function is a linear functional on a space of test functions.

Properties

Most commonly one takes the lower and the upper bound in the definition of the delta function equal to and , respectively. From here on this will be done.

The physicist's proof of these properties proceeds by making proper substitutions into the integral and using the ordinary rules of integral calculus. The delta function as a Fourier transform of the unit function f(x) = 1 (the second property) will be proved below. The last property is the analogy of the multiplication of two identity matrices,

.... (read more)