CZ:Featured article/Current: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chunbum Park
m (image size)
imported>Chunbum Park
No edit summary
Line 1: Line 1:
{{Image|SR-71 over mtns.jpg|right|250px| SR-71B loaned from the U.S. Air Force for use in high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California.}}
The '''[[Dirac delta function]]''' is a function introduced in 1930 by Paul Adrien Maurice Dirac in his seminal book on quantum mechanics. A physical model that visualizes a delta function is a mass distribution of finite total mass ''M''—the integral over the mass distribution. When the distribution becomes smaller and smaller,  while ''M'' is constant, the mass distribution shrinks to a ''point mass'', which by definition has zero extent and yet has a finite-valued integral equal to total mass ''M''. In the limit of a point mass the distribution becomes a Dirac delta function.  


The '''[[Lockheed SR-71]]''' (known unofficially as the '''Blackbird''', and by its crews as the '''Habu''' or the '''sled''') was an advanced, long-range, Mach 3 strategic reconnaissance aircraft developed from the Lockheed YF-12A and A-12 aircraft by the Lockheed Skunk Works. The SR-71 line was in service from 1964 to 1998, and it was the world's fastest and highest-flying operational manned aircraft throughout that entire period, an unparalleled achievement in aviation history. The aircraft flew so fast and so high that if the crew detected a surface-to-air missile launch, the standard evasive action was simply to accelerate. Thirteen aircraft are known to have been lost, all from non-combat related reasons.
Heuristically, the Dirac delta function can be seen as an extension of the Kronecker delta from integral indices (elements of <font style="vertical-align: 13%"> <math>\mathbb{Z}</math></font>) to real indices (elements of <font style="vertical-align: 13%"><math>\mathbb{R}</math></font>). Note that the Kronecker delta acts as a "filter" in a summation:
:<math>
The SR-71 included many novel and advanced technologies in order to achieve that performance; in particular, due to extensive frictional heating from its high speed, almost everything in the aircraft had to be specially produced; the airframe was built almost entirely of titanium, as operating temperatures were too high for aluminum. It was also one of the first aircraft to be have been built with a reduced radar cross section; however, the aircraft was not completely stealthy, and still had a fairly large radar signature. The chief designer, Kelly Johnson, was the man behind many of its advanced concepts. After his retirement, Ben Rich ran the program.
\sum_{i=m}^n \; f_i\; \delta_{ia} =
====History====
\begin{cases}
While the U-2 Dragon Lady reconnaissance aircraft produced immense value when it began to overfly the Soviet Union in 1956, it was accepted that this subsonic, nonstealthy aircraft eventually would be vulnerable to the Soviet air defense network. Indeed, one was shot down in May 1960, ending manned reconnaissance overflights of the Russian landmass. Overhead reconnaissance of the Soviet Union was taken over by satellites, but the SR-71 was already in development.
f_a & \quad\hbox{if}\quad a\in[m,n] \sub\mathbb{Z} \\
=====Predecessor models=====
0  & \quad \hbox{if}\quad a \notin [m,n].
The A-12 Oxcart, designed for the CIA by Kelly Johnson at the Lockheed Skunk Works, was the precursor of the SR-71. Lockheed used the name "Archangel" for this design, but many documents use Johnson's preferred name for the plane, "the Article." As the design evolved, the internal Lockheed designation went from A-1 to A-12 as configuration changes occurred, such as substantial design changes to reduce the radar cross-section. The first flight took place at Groom Lake, Nevada, on April 25, 1962.  It was 'Article 121,' an A-12, but it was equipped with less powerful Pratt & Whitney J75s due to protracted development of the intended Pratt & Whitney J58. The J58s were retrofitted as they became available. The J58s became the standard power plant for all subsequent aircraft in the series (A-12, YF-12, MD-21) as well as the follow-on SR-71 aircraft. Eighteen A-12 aircraft were built in four variations, of which three were YF-12As, prototypes of the planned F-12B interceptor version, and two were the M-21 variant (see below).
\end{cases}
</math>


The Air Force reconnaissance version was originally called the R-12 (see the opening fly page in Paul Crickmore's book ''SR-71, Secret Missions Exposed'', which contains a copy of the original R-12 labeled plan view drawing of the vehicle). However, during the 1964 presidential campaign, Senator Barry Goldwater continually criticized President Lyndon B. Johnson and his administration for falling behind the Soviet Union in the research and development of new weapon systems. Johnson decided to counter this criticism with the public release of the highly classified A-12 program and later the existence of the reconnaissance version.
In analogy, the Dirac delta function &delta;(''x''&minus;''a'')  is defined by (replace ''i'' by ''x'' and the summation over ''i'' by an integration over ''x''),
:<math>
\int_{a_0}^{a_1} f(x)  \delta(x-a) \mathrm{d}x =
\begin{cases}
f(a) & \quad\hbox{if}\quad  a\in[a_0,a_1] \sub\mathbb{R},   \\
0  & \quad \hbox{if}\quad a \notin [a_0,a_1].
\end{cases}
</math>


===== Name and designation =====
The Dirac delta function is ''not'' an ordinary well-behaved map  <font style="vertical-align: 12%"><math>\mathbb{R} \rightarrow \mathbb{R}</math></font>, but a distribution, also known as an ''improper'' or ''generalized function''. Physicists express its special character by stating that the Dirac delta function makes only sense as a factor in an integrand ("under the integral"). Mathematicians say that the delta function is a linear functional on a space of test functions.
The USAF had planned to redesignate the A-12 aircraft as the B-71 as the successor to the B-70 Valkyrie, whichhad two test Valkyries flying at Edwards Air Force Base, California. The B-71 would have a nuclear capability of 3 first-generation SRAM's (Short-Range Attack Missiles). The next designation was RS-71 (Reconnaissance-Strike) when the strike capability became an option. However, then USAF Chief of Staff Curtis LeMay preferred the SR designation and wanted the RS-71 to be named SR-71. Before the Blackbird was to be announced by President Johnson on February 29, 1964, LeMay lobbied to modify Johnson's speech to read SR-71 instead of RS-71. The media transcript given to the press at the time still had the earlier RS-71 designation in places, creating the myth that the president had misread the plane's designation.
 
''[[Lockheed SR-71|.... (read more)]]''
==Properties==
Most commonly one takes the lower and the upper bound in the definition of the delta function equal to <math>-\infty</math> and <math> \infty</math>, respectively. From here on this will be done.
:<math>
\begin{align}
\int_{-\infty}^{\infty} \delta(x)\mathrm{d}x &= 1, \\
\frac{1}{2\pi}\int_{-\infty}^{\infty} e^{ikx} \mathrm{d}k &= \delta(x) \\
\delta(x-a) &= \delta(a-x), \\
(x-a)\delta(x-a) &= 0, \\
\delta(ax) &= |a|^{-1} \delta(x) \quad (a \ne 0), \\
f(x) \delta(x-a) &= f(a) \delta(x-a), \\
\int_{-\infty}^{\infty} \delta(x-y)\delta(y-a)\mathrm{d}y &= \delta(x-a)  
\end{align}
</math>
The physicist's proof of these properties proceeds by making proper substitutions into the integral and using the ordinary rules of integral calculus. The delta function as a Fourier transform of the unit function ''f''(''x'') = 1 (the second property) will be proved below.  
The last property is the analogy of the multiplication of two identity matrices,
:<math>
\sum_{j=1}^n \;\delta_{ij}\;\delta_{jk} = \delta_{ik}, \quad i,k=1,\ldots, n.
</math>
''[[Dirac delta function|.... (read more)]]''

Revision as of 22:53, 10 September 2011

The Dirac delta function is a function introduced in 1930 by Paul Adrien Maurice Dirac in his seminal book on quantum mechanics. A physical model that visualizes a delta function is a mass distribution of finite total mass M—the integral over the mass distribution. When the distribution becomes smaller and smaller, while M is constant, the mass distribution shrinks to a point mass, which by definition has zero extent and yet has a finite-valued integral equal to total mass M. In the limit of a point mass the distribution becomes a Dirac delta function.

Heuristically, the Dirac delta function can be seen as an extension of the Kronecker delta from integral indices (elements of ) to real indices (elements of ). Note that the Kronecker delta acts as a "filter" in a summation:

In analogy, the Dirac delta function δ(xa) is defined by (replace i by x and the summation over i by an integration over x),

The Dirac delta function is not an ordinary well-behaved map , but a distribution, also known as an improper or generalized function. Physicists express its special character by stating that the Dirac delta function makes only sense as a factor in an integrand ("under the integral"). Mathematicians say that the delta function is a linear functional on a space of test functions.

Properties

Most commonly one takes the lower and the upper bound in the definition of the delta function equal to and , respectively. From here on this will be done.

The physicist's proof of these properties proceeds by making proper substitutions into the integral and using the ordinary rules of integral calculus. The delta function as a Fourier transform of the unit function f(x) = 1 (the second property) will be proved below. The last property is the analogy of the multiplication of two identity matrices,

.... (read more)