CZ:Featured article/Current: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chunbum Park
(→‎Dokdo: NMR spectroscopy)
imported>John Stephenson
(template)
 
(91 intermediate revisions by 5 users not shown)
Line 1: Line 1:
== '''[[NMR spectroscopy]]''' ==
{{:{{FeaturedArticleTitle}}}}
----
<small>
'''NMR spectroscopy''' (MR spectroscopy, NMR or Nuclear Magnetic Resonance Spectroscopy) measures the energy differences between the spin states of nuclei in the presence of a magnetic field by using radio frequency electromagnetic radiation.<ref> I. I. Rabi.(1937) Phys. Rev., 51  652</ref><ref>N. Bloembergen, E. Purcell and R.V.Pound. (1948). Phys. Rev.  73, 679.</ref> <ref>F. Bloch, W. Hansen, and M.E. Packard, (1946) Phys. Rev. 69, 127.</ref> The energy differences between the spin states of the nuclei depend upon the nature of the atom and are influenced by its environment. However, NMR spectroscopy is not limited to measurement of the energy differences between the spin states. NMR signals are also influenced by the motion of the nucleus and the rotational motion of the molecule within which the observed nucleus resides. Therefore, NMR spectroscopy provides  static (structure and composition) as well as dynamic information regarding the system of interest, e.g.,  [[protein]]s, [[DNA]] and other natural products.
==Footnotes==
 
Pulses of radio-frequency electromagnetic radiation can be used to perturb the nuclear spin systems in a variety of ways; the time dependent response of the system of interest can be recorded and analyzed:  
* to correlate different spectral properties of nuclei and/or
* to extract information regarding interactions between nuclear spins within the same molecule and/or
* to obtain information regarding intermolecular interactions. 
The amplitude, frequency, phase and duration of pulses of radio-frequency electromagnetic radiation, as well as static and dynamic position dependent magnetic fields, can be varied in many  combinations giving rise to a wide variety of NMR spectroscopic experiments.
 
NMR spectroscopic techniques are used extensively for structural elucidation of natural products and for quantitative analysis of components of complex mixtures such as body fluids.  However, its applications are not limited to these systems; and
NMR spectroscopy has been used for the study of matter in disordered, ordered and partially ordered systems such as gases, liquids, [[quantum fluids]]
<ref>D.D.Osheroff, W.J.Gully, R.C.Richardson and D.M.Lee, Phys. Rev. Lett. (1972) 29, 920 </ref> <ref>http://nobelprize.org/nobel_prizes/physics/laureates/1996/lee-lecture.pdf </ref>, 
superconductors, solutions, amorphous solids, crystalline solids, [[liquid crystals]], membranes and living organisms. NMR spectroscopic methods have also found use in  [[quantum computing]].
 
''[[NMR spectroscopy|.... (read more)]]''
 
{| class="wikitable collapsible collapsed" style="width: 90%; float: center; margin: 0.5em 1em 0.8em 0px;"
|-
! style="text-align: center;" | &nbsp;[[NMR spectroscopy#References|notes]]
|-
|
{{reflist|2}}
{{reflist|2}}
|}
</small>

Latest revision as of 10:19, 11 September 2020

Napoleon (Napoleon Bonaparte or, after 1804, Napoleon I, Emperor of the French) was a world historic figure and dictator of France from 1799 to 1814. He was the greatest general of his age--perhaps any age, with a sure command of battlefield tactics and campaign strategies, As a civil leader he played a major role in the French Revolution, then ended it when he became dictator in 1799 and Emperor of France in 1804 He modernized the French military, fiscal, political legal and religious systems. He fought an unending series of wars against Britain with a complex, ever-changing coalition of European nations on both sides. Refusing to compromise after his immense defeat in Russia in 1812, he was overwhelmed by a coalition of enemies and abdicated in 1814. In 1815 he returned from exile, took control of France, built a new army, and in 100 days almost succeeded--but was defeated at Waterloo and exiled to a remote island. His image and memory are central to French national identity, but he is despised by the British and Russians and is a controversial figure in Germany and elsewhere in Europe.

The Trail of Napoleon - J.F. Horrabin - Map.jpg

Rise to Power

Once the Revolution had begun, so many of the aristocratic officers turned against the Revolutionary government, or were exiled or executed, that a vacuum of senior leadership resulted. Promotions came very quickly now, and loyalty to the Revolution was as important as technical skill; Napoleon had both. His demerits were overlooked as he was twice reinstated, promoted, and allowed to collect his back pay. Paris knew him as an intellectual soldier deeply involved in politics. His first test of military genius came at Toulon in 1793, where the British had seized this key port. Napoleon, an acting Lieutenant-Colonel, used his artillery to force the British to abandon the city. He was immediately promoted by the Jacobin radicals under Robespierre to brigadier-general, joining the ranks of several brilliant young generals. He played a major role in defending Paris itself from counter-revolutionaries, and became the operational planner for the Army of Italy and planned two successful attacks in April 1794. He married Josephine (Rose de Beauharnais) in 1796, after falling violently in love with the older aristocratic widow.[1]

Footnotes

  1. Englund pp 63-73, 91-2, 97-8