Grothendieck topology

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The notion of a Grothendieck topology or site' captures the essential properties necessary for constructing a robust theory of cohomology of sheaves. The theory of Grothendieck topologies was developed by Alexander Grothendieck and Michael Artin.

Definition

A Grothendieck topology consists of

  1. A category, denoted
  2. A set of coverings , denoted , such that
    1. for each object of
    2. If , and is any morphism in , then the canonical morphisms of the fiber products determine a covering
    3. If and , then

Examples

  1. A standard topological space becomes a category when you regard the open subsets of as objects, and morphisms are inclusions. An open covering of open subsets clearly verify the axioms above for coverings in a site. Notice that a presheaf of rings is just a contravariant functor from the category into the category of rings.
  2. The Small Étale Site Let be a scheme. Then the category of étale schemes over (i.e., -schemes over whose structural morphisms are étale) becomes a site if we require that coverings are jointly surjective; that is,

Sheaves on Sites

In analogy with the situation for topological spaces, a presheaf may be defined as a contravariant functor such that for all coverings , the diagram is exact.