Compactness axioms

From Citizendium
Revision as of 11:00, 31 July 2024 by Suggestion Bot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In general topology, the important property of compactness has a number of related properties.

The definitions require some preliminary terminology. A cover of a set X is a family such that the union is equal to X. A subcover is a subfamily which is again a cover where B is a subset of A. A refinement is a cover such that for each β in B there is an α in A such that . A cover is finite or countable if the index set is finite or countable. A cover is point finite if each element of X belongs to a finite numbers of sets in the cover. The phrase "open cover" is often used to denote "cover by open sets".

Definitions

We say that a topological space X is

  • Compact if every cover by open sets has a finite subcover.
  • A compactum if it is a compact metric space.
  • Countably compact if every countable cover by open sets has a finite subcover.
  • Lindelöf if every cover by open sets has a countable subcover.
  • Sequentially compact if every convergent sequence has a convergent subsequence.
  • Paracompact if every cover by open sets has an open locally finite refinement.
  • Metacompact if every cover by open sets has a point finite open refinement.
  • Orthocompact if every cover by open sets has an interior preserving open refinement.
  • σ-compact if it is the union of countably many compact subspaces.
  • Locally compact if every point has a compact neighbourhood.
  • Strongly locally compact if every point has a neighbourhood with compact closure.
  • σ-locally compact if it is both σ-compact and locally compact.
  • Pseudocompact if every continuous real-valued function is bounded.