Computer
During World War II, the first computers (electronic machines that perform numerical calculations far faster than humans) were developed by the British and U. S. governments as a result of secret military projects. These first computers did not remain secret for long; they were adopted by private industry, and they quickly grew in usefulness while decreasing in size and cost. Today, computers are ubiquitous household objects, perhaps unrecognized in the form of a tiny microprocessor embedded in a gadget such as a phone or a TV remote. Even defining the word computer may spark a debate, because so many different kinds of computers exist, and they are used for so many different kinds of activities.
The history of computing is complex. The desire for computers had existed for a long time, but technology was net yet advanced enough to realize them. People had hankered after mechanical devices to help with mathematical calculations, inventing the abacus, the slide rule, and a host of mechanical adding machines. But the electronic computer's rapid evolution forever changed science and technology, the military, and the business world, making its invention a milestone for humanity on a par with the invention of the printing press.
The nature of computing
Some people define a computer as a machine for manipulating data according to a list of instructions known as a program. However, this definition may only make sense to people who already know what a computer can do. Computers are extremely versatile. In fact, they are universal information-processing machines, but at the deepest level, what they really do is perform arithmetic. Today, most computers do arithmetic using the binary number system, because a binary number can be represented by an array of on-off switches. Each 0 or 1 digit in the binary number is called a bit. In early electronic computers, the switches used for each digit were electromagnetic switches, also called relays. Later, vacuum tubes replaced electronic relays, and eventually transistors took the place of both relays and tubes. Transisters can now be manufactured as tiny devices, almost molecular in size, embedded within silicon chips. These tiny transistorized computers work on the same principles as the first, giant relay and vacuum tube based computers (which occupied entire buildings).
Computers and mathematics are closely related. Initially, mathematicians and scientists were the only users of computers. But today, what we tend to think of as a computer consists not only of the underlying hardware, with its limited instruction set that performs arithmetic, but also an operating system, which is a set of programs which allow people to use the computer more easily. The operating system is software; it allows people to write new programs for the computer. Since the early 1980's, universities started offering degrees in the academic disciplines such as computer science or computer engineering, devoted to the design of hardware and software for computers. These general fields of study consist of many sub-fields, such as Computer architecture (how to build computer hardware), programming languages (specifying how people can write programs), or compilers (writing the programs that allow people to use a programming language). In addition, most academic disciplines, and most businesses, use computers as tools.
Digital circuits
The conceptual design above could be implemented using a variety of different technologies. As previously mentioned, a stored program computer could be designed entirely of mechanical components like Babbage's devices or the Digi-Comp I. However, digital circuits allow Boolean logic and arithmetic using binary numerals to be implemented using relays — essentially, electrically controlled switches. Shannon's famous thesis showed how relays could be arranged to form units called logic gates, implementing simple Boolean operations. Others soon figured out that vacuum tubes — electronic devices, could be used instead. Vacuum tubes were originally used as a signal amplifier for radio and other applications, but were used in digital electronics as a very fast switch; when electricity is provided to one of the pins, current can flow through between the other two.
Through arrangements of logic gates, one can build digital circuits to do more complex tasks, for instance, an adder, which implements in electronics the same method — in computer terminology, an algorithm — to add two numbers together that children are taught — add one column at a time, and carry what's left over. Eventually, through combining circuits together, a complete ALU and control system can be built up. This does require a considerable number of components. CSIRAC, one of the earliest stored-program computers, is probably close to the smallest practically useful design. It had about 2,000 valves, some of which were "dual components"[1], so this represented somewhere between 2,000 and 4,000 logic components.
Vacuum tubes had severe limitations for the construction of large numbers of gates. They were expensive, unreliable (particularly when used in such large quantities), took up a lot of space, and used a lot of electrical power, and, while incredibly fast compared to a mechanical switch, had limits to the speed at which they could operate. Therefore, by the 1960s they were replaced by the transistor, a new device which performed the same task as the tube but was much smaller, faster operating, reliable, used much less power, and was far cheaper.
In the 1960s and 1970s, the transistor itself was gradually replaced by the integrated circuit, which placed multiple transistors (and other components) and the wires connecting them on a single, solid piece of silicon. By the 1970s, the entire ALU and control unit, the combination becoming known as a CPU, were being placed on a single "chip" called a microprocessor. Over the history of the integrated circuit, the number of components that can be placed on one has grown enormously. The first IC's contained a few tens of components; as of 2006, the Intel Core Duo processor contains 151 million transistors.[2]
Tubes, transistors, and transistors on integrated circuits can be used as the "storage" component of the stored-program architecture, using a circuit design known as a flip-flop, and indeed flip-flops are used for small amounts of very high-speed storage. However, few computer designs have used flip-flops for the bulk of their storage needs. Instead, earliest computers stored data in Williams tubes — essentially, projecting some dots on a TV screen and reading them again, or mercury delay lines where the data was stored as sound pulses travelling slowly (compared to the machine itself) along long tubes filled with mercury. These somewhat ungainly but effective methods were eventually replaced by magnetic memory devices, such as magnetic core memory, where electrical currents were used to introduce a permanent (but weak) magnetic field in some ferrous material, which could then be read to retrieve the data. Eventually, DRAM was introduced. A DRAM unit is a type of integrated circuit containing huge banks of an electronic component called a capacitor which can store an electrical charge for a period of time. The level of charge in a capacitor could be set to store information, and then measured to read the information when required.
I/O devices
I/O (short for input/output) is a general term for devices that send computers information from the outside world and that return the results of computations. These results can either be viewed directly by a user, or they can be sent to another machine, whose control has been assigned to the computer: In a robot, for instance, the controlling computer's major output device is the robot itself.
The first generation of computers were equipped with a fairly limited range of input devices. A punch card reader, or something similar, was used to enter instructions and data into the computer's memory, and some kind of printer, usually a modified teletype, was used to record the results. Over the years, other devices have been added. For the personal computer, for instance, keyboards and mice are the primary ways people directly enter information into the computer; and monitors are the primary way in which information from the computer is presented back to the user, though printers, speakers, and headphones are common, too. There is a huge variety of other devices for obtaining other types of input. One example is the digital camera, which can be used to input visual information. There are two prominent classes of I/O devices. The first class is that of secondary storage devices, such as hard disks, CD-ROMs, key drives and the like, which represent comparatively slow, but high-capacity devices, where information can be stored for later retrieval; the second class is that of devices used to access computer networks. The ability to transfer data between computers has opened up a huge range of capabilities for the computer. The global Internet allows millions of computers to transfer information of all types between each other.
Programs
Computer programs are simply lists of instructions for the computer to execute. These can range from just a few instructions which perform a simple task, to a much more complex instruction list which may also include tables of data. Many computer programs contain millions of instructions, and many of those instructions are executed repeatedly. A typical modern PC (in the year 2005) can execute around 3 billion instructions per second. Computers do not gain their extraordinary capabilities through the ability to execute complex instructions. Rather, they do millions of simple instructions arranged by people known as programmers.
In practice, people do not normally write the instructions for computers directly in machine language. Such programming is time-consuming and error-prone, making programmers less productive. Instead, programmers describe the desired actions in a "high level" programming language which is then translated into the machine language automatically by special computer programs (interpreters and compilers). Some programming languages map very closely to the machine language, such as Assembly Language (low level languages); at the other end, languages like Prolog are based on abstract principles far removed from the details of the machine's actual operation (high level languages). The language chosen for a particular task depends on the nature of the task, the skill set of the programmers, tool availability and, often, the requirements of the customers (for instance, projects for the US military were often required to be in the Ada programming language).
Computer software is an alternative term for computer programs; it is a more inclusive phrase and includes all the ancillary material accompanying the program needed to do useful tasks. For instance, a video game includes not only the program itself, but also data representing the pictures, sounds, and other material needed to create the virtual environment of the game. A computer application is a piece of computer software provided to many computer users, often in a retail environment. The stereotypical modern example of an application is perhaps the office suite, a set of interrelated programs for performing common office tasks.
Going from the extremely simple capabilities of a single machine language instruction to the myriad capabilities of application programs means that many computer programs are extremely large and complex. A typical example is Windows XP, created from roughly 40 million lines of computer code in the C++ programming language;[3] there are many projects of even bigger scope, built by large teams of programmers. The management of this enormous complexity is key to making such projects possible; programming languages, and programming practices, enable the task to be divided into smaller and smaller subtasks until they come within the capabilities of a single programmer in a reasonable period.
Nevertheless, the process of developing software remains slow, unpredictable, and error-prone; the discipline of software engineering has attempted, with some success, to make the process quicker and more productive and improve the quality of the end product.
A problem or a model is computational if it is formalized in such way that can be transformed to the form of a computer program. Computationality is the serious research problem of humanistic, social and psychological sciences, for example, modern systemics, cognitive and socio-cognitive [4] approaches develop different attempts to the computational specification of their "soft" knowledge.
Libraries and operating systems
Soon after the development of the computer, it was discovered that certain tasks were required in many different programs; an early example was computing some of the standard mathematical functions. For the purposes of efficiency, standard versions of these were collected in libraries and made available to all who required them. A particularly common task set related to handling the gritty details of "talking" to the various I/O devices, so libraries for these were quickly developed.
By the 1960s, with computers in wide industrial use for many purposes, it became common for them to be used for many different jobs within an organization. Soon, special software to automate the scheduling and execution of these many jobs became available. The combination of managing "hardware" and scheduling jobs became known as the "operating system"; the classic example of this type of early operating system was OS/360 by IBM.[5]
The next major development in operating systems was timesharing — the idea that multiple users could use the machine "simultaneously" by keeping all of their programs in memory, executing each user's program for a short time so as to provide the illusion that each user had their own computer. Such a development required the operating system to provide each user's programs with a "virtual machine" such that one user's program could not interfere with another's (by accident or design). The range of devices that operating systems had to manage also expanded; a notable one was hard disks; the idea of individual "files" and a hierarchical structure of "directories" (now often called folders) greatly simplified the use of these devices for permanent storage. Security access controls, allowing computer users access only to files, directories and programs they had permissions to use, were also common.
Another major addition to the operating system was tools to provide programs with a standardized graphical user interface. While there are few technical reasons why a GUI has to be tied to the rest of an operating system, it allows the operating system vendor to encourage all the software for their operating system to have a similar looking and acting interface.
With the rise of the Internet most operating systems have a TCP/IP networking stack. Just as hard disks induced operating systems to come up with storage abstractions of files and directories, the network hardware induced abstractions such as sockets and URLs. The regular connection of computers to the Internet raised the importance of security in Operating Systems and as a result operating systems have had to adopt firewall, encryption, update and runtime protection functionalities.
Outside these "core" functions, operating systems are usually shipped with an array of other tools, some of which may have little connection with these original core functions but have been found useful by enough customers for a provider to include them. For instance, Apple's Mac OS X ships with a digital video editor application.
Operating systems for smaller computers may not provide all of these functions. The operating systems for early microcomputers with limited memory and processing capability did not, and Embedded computers typically have specialized operating systems or no operating system at all, with their custom application programs performing the tasks that might otherwise be delegated to an operating system.
Computer applications
The first digital computers, with their large size and cost, mainly performed scientific calculations, often to support military objectives. The ENIAC was originally designed to calculate ballistics-firing tables for artillery, but it was also used to calculate neutron cross-sectional densities to help in the design of the hydrogen bomb[6] significantly speeding up its development. (Many of the most powerful supercomputers available today are also used for nuclear weapons simulations.) The CSIR Mk I, the first Australian stored-program computer, was amongst many other tasks used for the evaluation of rainfall patterns for the catchment area of the Snowy Mountains Scheme, a large hydroelectric generation project[7] Others were used in cryptanalysis, for example the first programmable (though not general-purpose) digital electronic computer, Colossus, built in 1943 during World War II. Despite this early focus of scientific and military engineering applications, computers were quickly used in other areas.
From the beginning, stored program computers were applied to business problems. The LEO, a stored program-computer built by J. Lyons and Co. in the United Kingdom, was operational and being used for inventory management and other purposes 3 years before IBM built their first commercial stored-program computer. Continual reductions in the cost and size of computers saw them adopted by ever-smaller organizations. Moreover, with the invention of the microprocessor in the 1970s, it became possible to produce inexpensive computers. In the 1980s, personal computers became popular for many tasks, including book-keeping, writing and printing documents, calculating forecasts and other repetitive mathematical tasks involving spreadsheets.
As computers have become less expensive, they have been used extensively in the creative arts as well. Sound, still pictures, and video are now routinely created (through synthesizers, computer graphics and computer animation), and near-universally edited by computer. They have also been used for entertainment, with the video game becoming a huge industry.
Computers have been used to control mechanical devices since they became small and cheap enough to do so; indeed, a major spur for integrated circuit technology was building a computer small enough to guide the Apollo missions[8][9] two of the first major applications for embedded computers. Today, it is almost rarer to find a powered mechanical device not controlled by a computer than to find one that is at least partly so. Perhaps the most famous computer-controlled mechanical devices are robots, machines with more-or-less human appearance and some subset of their capabilities. Industrial robots have become commonplace in mass production, but general-purpose human-like robots have not lived up to the promise of their fictional counterparts and remain either toys or research projects.
Robotics, indeed, is the physical expression of the field of artificial intelligence, a discipline whose exact boundaries are fuzzy but to some degree involves attempting to give computers capabilities that they do not currently possess but humans do. Over the years, methods have been developed to allow computers to do things previously regarded as the exclusive domain of humans — for instance, "read" handwriting, play chess, or perform symbolic integration. However, progress on creating a computer that exhibits "general" intelligence comparable to a human has been extremely slow.
Networking and the Internet
Computers have been used to coordinate information in multiple locations since the 1950s, with the US military's SAGE system the first large-scale example of such a system, which led to a number of special-purpose commercial systems like Sabre.
In the 1970s, computer engineers at research institutions throughout the US began to link their computers together using telecommunications technology. This effort was funded by ARPA, and the computer network that it produced was called the ARPANET. The technologies that made the Arpanet possible spread and evolved. In time, the network spread beyond academic and military institutions and became known as the Internet. The emergence of networking involved a redefinition of the nature and boundaries of the computer. In the phrase of John Gage and Bill Joy (of Sun Microsystems), "the network is the computer". Computer operating systems and applications were modified to include the ability to define and access the resources of other computers on the network, such as peripheral devices, stored information, and the like, as extensions of the resources of an individual computer. Initially these facilities were available primarily to people working in high-tech environments, but in the 1990s the spread of applications like e-mail and the World Wide Web, combined with the development of cheap, fast networking technologies like Ethernet and ADSL saw computer networking become ubiquitous almost everywhere. In fact, the number of computers that are networked is growing phenomenally. A very large proportion of personal computers regularly connect to the Internet to communicate and receive information.[10] "Wireless" networking, often utilizing mobile phone networks, has meant networking is becoming increasingly ubiquitous even in mobile computing environments. Wi-Fi is also a popular application, involving the wireless transfer of data through the internet. Wi-Fi is commonly used with laptops and can even be used with modern video game consoles.
Alternative computing models
Despite the massive gains in speed and capacity over the history of the digital computer, there are many tasks for which current computers are inadequate. For some of these tasks, conventional computers are fundamentally inadequate, because the time taken to find a solution grows very quickly as the size of the problem to be solved expands. Therefore, there has been research interest in some computer models that use biological processes, or the oddities of quantum physics, to tackle these types of problems. For instance, DNA computing is proposed to use biological processes to solve certain problems. Because of the exponential division of cells, a DNA computing system could potentially tackle a problem in a massively parallel fashion. However, such a system is limited by the maximum practical mass of DNA that can be handled.
Quantum computers, as the name implies, take advantage of the unusual world of quantum physics. If a practical quantum computer is ever constructed, there are a limited number of problems for which the quantum computer is fundamentally faster than a standard computer. However, these problems, relating to cryptography and, unsurprisingly, quantum physics simulations, are of considerable practical interest.
These alternative models for computation remain research projects at the present time, and will likely find application only for those problems where conventional computers are inadequate.
See also Unconventional computing.
Computing professions and disciplines
In the developed world, virtually every profession makes use of computers. However, certain professional and academic disciplines have evolved that specialize in techniques to construct, program, and use computers. Terminology for different professional disciplines is still somewhat fluid and new fields emerge from time to time: however, some of the major groupings are as follows:
- Computer engineering is the branch of electrical engineering that focuses both on hardware and software design, and the interaction between the two.
- Computer science is a traditional name of the academic study of the processes related to computers and computation, such as developing efficient algorithms to perform specific class of tasks. It tackles questions as to whether problems can be solved at all using a computer, how efficiently they can be solved, and how to construct efficient programs to compute solutions. A huge array of specialties has developed within computer science to investigate different classes of problems.
- Software engineering concentrates on methodologies and practices to allow the development of high quality software systems, while minimizing, and reliably estimating, costs and timelines. Software engineers are often called "programmers", because they design and write computer programs.
- Information systems concentrates on the use and deployment of computer systems in a wider organizational (usually business) context. Generally, this manifests itself in the IT department of a larger company.
- Many disciplines have developed at the intersection of computers with other professions; one of many examples is experts in geographical information systems who apply computer technology to problems of managing geographical information.
There are three major professional societies dedicated to computers, the British Computer Society the Association for Computing Machinery and IEEE Computer Society.
Security
- Data Security
- Network Security
- Hardware Security
- Organizational Security
- Security Contingency
- Disaster Security
See also
- Association for Computing Machinery
- Beowulf cluster
- IEEE Computer Society
- Operating system
- Computer science
- Open source software
- Personal computer
- Internet
Other computers
- Analog computer
- Chemical computer
- DNA computer
- Human computer
- Molecular computer
- Optical computer
- Quantum computer
- Wetware computer
See also Unconventional computing.
Notes and references
- ↑ The last of the first : CSIRAC : Australia's first computer, Doug McCann and Peter Thorne, ISBN 0-7340-2024-4.
- ↑ Thon, Harald and Topel, Bert (January 16, 2006). Will Core Duo Notebooks Trade Battery Life For Quicker Response?. Tom's Hardware. Retrieved on 2006-04-09.
- ↑ Tanenbaum, Andrew S. Modern Operating Systems (2nd ed.). Prentice Hall. ISBN 0-13-092641-8.
- ↑ Gadomski Adam Maria (1993). TOGA Meta-theory. ENEA. Retrieved on 2006-07-24.
- ↑ System/360 Announcement,IBM Data Processing Division (April 7, 1964) [url=http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PR360.html]
- ↑ Classical Super / Runaway Super. Globalsecurity.org (Unknown). Retrieved on 2006-04-05.
- ↑ The last of the first : CSIRAC : Australia's first computer, Doug McCann and Peter Thorne, ISBN 0-7340-2024-4.
- ↑ Brown, Alexander (August 22, 2002). Integrated Circuits in the Apollo Guidance Computer. Retrieved on 2006-04-05.
- ↑ Technological Innovation and the ICBM. Smithsonian Institution (Unknown). Retrieved on 2006-04-05.
- ↑ North America Internet Usage Stats. Internet World Stats (April 3, 2006). Retrieved on 2006-04-05.
http://www97.intel.com/discover/JourneyInside/TJI_Intro_lesson1/default.aspx