Hash (cryptography): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Sandy Harris
imported>Sandy Harris
Line 13: Line 13:


MD5 was Rivests's version of an enhanced MD4. Like MD4, it gives a 128-bit hash. RFC 1321 gives a specification and RFC 1820 a performance analysis.
MD5 was Rivests's version of an enhanced MD4. Like MD4, it gives a 128-bit hash. RFC 1321 gives a specification and RFC 1820 a performance analysis.
=== RIPE-MD ===
This was a European standard.


=== SHA ===
=== SHA ===
Line 32: Line 28:


In internal structure, the four hashes are identical except the 384-bit and 512-bit versions use 64-bit variables while the 256-bit and 224-bit versions use 32-bit variables. SHA-384 is identical to SHA-512 except it starts with different constants and truncates the output to 384 bits. SHA-224 has the same relation to SHA-256.
In internal structure, the four hashes are identical except the 384-bit and 512-bit versions use 64-bit variables while the 256-bit and 224-bit versions use 32-bit variables. SHA-384 is identical to SHA-512 except it starts with different constants and truncates the output to 384 bits. SHA-224 has the same relation to SHA-256.
=== RIPE-MD ===
This was a European standard.


== Other 20th century hashes ==
== Other 20th century hashes ==

Revision as of 19:50, 26 November 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
For more information, see: Cryptography.

Template:TOC-right

In cryptography a hash or message digest is a fixed-size digest which can be calculated from an input text of any size up to some large limit. While cryptographic principles are used, these functions are used in manners quite different than two-way, or even one-way full-text cryptographically protected communications. The primary applications of hashes and message digests are as means of error detection, source authentication, or data integrity protection.

MD4 and descendants

MD4

Message Digest algorithm number 4 was from Ron Rivest. It is no longer used, replaced by its descendants. A specification is in RFC 1320.

MD5

MD5 was Rivests's version of an enhanced MD4. Like MD4, it gives a 128-bit hash. RFC 1321 gives a specification and RFC 1820 a performance analysis.

SHA

There are a whole family of SHA hashes, all designed by NSA. The original SHA was essentially an improved MD4, with two major changes. It increased the hash size from 128 to 160 bits, using five 32-bit chunks of internal state instead of four. Also, there is an expansion step which spreads the state out to 80 chunks. One chunk is then mixed back in at each round of te hash. This was not much used, quickly replaced by SHA-1.

SHA-1

SHA-1 is a slightly modified SHA, also giving a 160-bit hash. It adds a one-bit rotation in each round. The NSA have never explained why they felt this change was necessary; presumably it protects against some attack which they do not wish to reveal.

SHA-1 is in very wide use. For example, it is used in protocols such as PGP and IPsec and in random number generators such as Intel's hardware generator and the software random device in Linux.

SHA-2

SHA-2 is a family of hashes standardized by the US National Institute for Standards and Technology, NIST. The design is based on SHA. There are four of them, named by their hash size: SHA-224, SHA-256, SHA-384 and SHA-512.

Because of the birthday attack, when a hash is used with a block cipher, the hash size should be twice the key length of the cipher, SHA-256, 384 and 512 are intended to be used with AES-128, 192 and 256 respectively. SHA-224 is for use with Triple DES which has only 112-bit strength.

In internal structure, the four hashes are identical except the 384-bit and 512-bit versions use 64-bit variables while the 256-bit and 224-bit versions use 32-bit variables. SHA-384 is identical to SHA-512 except it starts with different constants and truncates the output to 384 bits. SHA-224 has the same relation to SHA-256.

RIPE-MD

This was a European standard.

Other 20th century hashes

Tiger

Whirlpool

The Advanced Hash Standard

In 2005, the US National Institute of Standards and Technology (NIST) began the process of defining a new hash standard, SHA-3 or the Advanced Hash Standard or just AHS. There is a NIST page with details and links.

The overall process and methodology are similar to what they did for the AES contest, choosing a new cipher standard which became the Advanced Encryption Standard. Starting in 2005, they sponsored two public workshops contest to discuss the state of the hashing art, then issued a draft requirements document and invited public comment. After revising the requirements, they issued a call for submissions in November 2007. The deadline on that was October 31, 2008.

As of early November, the deadline has passed and NIST have received 64 entries. They are going through them to see which ones actually meet all submission criteria. Once that is done, those "complete and proper" submissions will become the first round candidates and all their design documents will be public on the NIST site. Meanwhile, there are at least two other sites with partial lists and links to design documents, the SHA-3 Lounge and the SHA-3 Zoo.

There will be more conferences, then a narrowing of the field to a group of finalists, more analysis and another conference, then a final selection. Target date for completion of the process and release of the new standard is 2012.

Skein

From Bruce Schneier and others: [1]

MD6

From a team led by Ron Rivest.

CubeHash

From Dan Bernstein, [2]

Essence

From Jason Worth Martin [3]

Sgàil

Peter Maxwell [4]

EnRUPT

Sean O'Neil [5]

NaSha

Smile Markovski and Aleksandra Mileva [6]

Maraca

Robert Jenkins [7]