Nuclear proliferation: Difference between revisions
Line 19: | Line 19: | ||
| France || 1960 || 1963 || UPGG Pu production reactor | | France || 1960 || 1963 || UPGG Pu production reactor | ||
|- | |- | ||
|India|| | |India|| 1974 || 1969|| Pu production reactor | ||
|- | |- | ||
|Pakistan||<big>'''1998'''</big>||1971||Small CANDU may have formed technological basis for production reactors | |Pakistan||<big>'''1998'''</big>||1971||Small CANDU may have formed technological basis for production reactors |
Revision as of 19:22, 6 April 2023
As of 2022, countries with nuclear weapons have followed one or both of two paths in producing fissile materials for nuclear weapons: enrichment of uranium to very high fractions of U-235 (HEU), or extraction of fissile plutonium (Pu) from irradiated uranium nuclear reactor fuel. Both paths are technically challenging but achievable. The US forged the way on both paths during its World War II Manhattan Project. The fundamental aspects of both paths are well understood, but both are technically challenging. Even relatively poor countries can be successful if they have sufficient motivation, financial investment, and, in some cases, direct or illicit assistance from more technologically advanced countries.
Section 1
The International Atomic Energy Agency (IAEA) has a vigorous program to prevent additional countries from acquiring nuclear weapons. The Treaty on the Non-Proliferation of Nuclear Weapons (NPT) is the cornerstone arrangement under which strategic rivals can trust by independent verification that their potential nuclear opponents are not developing a nuclear weapons threat. The large expense of weapons programs makes it very unlikely that a country that knows its rivals are not so engaged an effective disincentive to start or maintain a nuclear weapons program of its own. With some notable and worrying exceptions, this has been largely successful.
Section 2
It is frequently claimed that building a civil nuclear power program produces a weapons proliferation risk. There is an overlap in the two distinct technologies, after all. And enriching uranium to levels needed by existing reactors (under 5%, or LEU) or advanced nuclear reactors (some near 20%, or high-assay LEU) is the same technology that can enrich uranium to very high levels. Enrichment levels and centrifuge configurations can presumably be monitored using remote cameras, on-site inspections, and installed instrumentation, hence the value of the inspections under the NPT. Using commercial power reactors is an extremely ineffective, slow, expensive, easily detectable way to produce Pu for weapon use because refueling them is awkward and detectable. That is why the US and other countries developed specialized Pu production reactors and/or uranium enrichment to produce fissile cores for nuclear weapons.
Section 3
While nuclear weapons proliferation is a matter of extreme importance, it is not apparent that it is a consequence of a country’s deployment of commercial nuclear reactors. Table 1 lists all the countries with operating commercial nuclear reactors (as of 2022) plus countries without commercial nuclear reactors but declared or known to be nuclear weapons states. There are 33 countries/entities with operating commercial nuclear reactors. Of these, 7 possess nuclear weapons. Of those seven, five developed commercial nuclear power after producing weapons. North Korea does not operate power reactors, but does have nuclear weapons. The Joint Comprehensive Plan of Action (The Iran Nuclear Deal) was based on the evidence that Iran’s new Bushehr reactors were not part of a weapons program, but that Iran’s uranium enrichment program and its uncompleted research reactor at Arak were the focus of its weapons development work.
Country | First Weapons1 | First Commercial2 | Comments |
---|---|---|---|
China | 1964 | 1991 | - |
France | 1960 | 1963 | UPGG Pu production reactor |
India | 1974 | 1969 | Pu production reactor |
Pakistan | 1998 | 1971 | Small CANDU may have formed technological basis for production reactors |
USA | 1945 | 1960 | Pu production reactors |
1Year of first nuclear weapons test.[1]
2Year of first commercial reactor operation.[2][3]
Notes and References
- ↑ Nuclear Ambitions: The Spread of Nuclear Weapons 1989-1990, Leonard S. Spector with Jacqueline R. Smith, Westview Press, 1990; ISBN 0-8133-8075-8.
- ↑ https://www.world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-and-uranium-requireme.aspx
- ↑ https://pris.iaea.org/pris
Cite error: <ref>
tag with name "d" defined in <references>
is not used in prior text.