Formal group: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Giovanni Antonio DiMatteo
(soit page)
 
imported>Richard Pinch
m (link)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
{{subpages}}
==Definition==
==Definition==
Let <math>A</math> be a commutative ring.  A ''formal group'' in one parameter is a series <math>F\in A[[X,Y]]</math> such that
Let <math>A</math> be a commutative ring.  A '''formal group''' in one parameter is a [[formal power series]] <math>F\in A[[X,Y]]</math> such that
#<math>F(X,0)=F(0,X)=X</math>
#<math>F(X,0)=F(0,X)=X</math>
#<math>F(X,Y)=F(Y,X)</math>
#<math>F(X,Y)=F(Y,X)</math>

Latest revision as of 12:24, 9 December 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Definition

Let be a commutative ring. A formal group in one parameter is a formal power series such that

  1. in
  2. There is a series such that

Examples

  1. The additive formal group:
  2. The multiplicative formal group: . In this case, .