Algebraic surface: Difference between revisions
Jump to navigation
Jump to search
imported>Subpagination Bot m (Add {{subpages}} and remove any categories (details)) |
imported>Richard Pinch m (→Invariants: sp, link) |
||
Line 9: | Line 9: | ||
=== Invariants === | === Invariants === | ||
* classical invariants | * classical invariants | ||
* the | * the [[Kodaira dimension]] | ||
=== The Picard group and intersection theory === | === The Picard group and intersection theory === | ||
* intersection product | * intersection product |
Revision as of 15:33, 1 December 2008
An algebraic surface over a field is a two dimensional algebraic variety over this field.
Examples
Classification
Invariants
- classical invariants
- the Kodaira dimension
The Picard group and intersection theory
- intersection product
- various forms of Riemann Roch
- kodaira dimension
Negative Kodaira dimension
Kodaira dimension 0
Kodaira dimension 1
General type
Positive characteristics
References
- W. Barth, C. Peters, and A. Van de Ven Compact Complex Surfaces
- A. Beauville Complex algebraic surfaces ISBN 0521498422
- E. Bombieri and D. Mumford Enriques' classification of surfaces in char. ; part I in Global analysis, Princeton university press. Part II in complex analysis and algebraic geometry, Cambridge university press. Part III in Invent Math. 35.
- P. Griffithis and J. Harris Principles of Algebraic Geometry. Chapter 4